Skip to main content

Cellular and Molecular Targets Underpinning Memory Enhancement by Ashwagandha

  • Chapter
  • First Online:
Science of Ashwagandha: Preventive and Therapeutic Potentials

Abstract

The search for therapeutic candidates of memory disorders including gene targets and compounds both synthetic and natural has been a prime arena of neurobiology research. Amongst suggested therapeutic compounds, several herbal products with a long history of use in Ayurveda have gained attention in modern medicine. Ashwagandha (Withania somnifera) also referred to as “Queen of Ayurveda” is at the zenith of Ayurvedic herbs owing to its tremendous potential to recover memory decline in aging and neurodegenerative pathologies as well as enhance basal memory function of healthy individuals. Despite such promising effects, limited mechanistic evidences have hindered its acceptance in modern medicine. However, technical advances in neuroscience research over the past decade have filled-in some gaps in understanding of molecular and mechanistic biology of Ashwagandha effects. In this chapter, we highlight the studies that have deciphered the cellular and molecular mechanisms of memory enhancing potential of Ashwagandha in various disease models. Cellular targets of Ashwagandha include (i) activation of antioxidant defence system rescuing nerve cells from apoptosis, oxidative stress and DNA damage, (ii) induction of cholinergic system and (iii) up-regulation of memory linked neuroplasticity genes and neuronal arborisation. All of these molecular effects translate into increase in memory. Such multiple-module action has intrigued research to unravel upstream master regulators of Ashwagandha effects on gene expression, cell physiology and behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baitharu I, Jain V, Deep SN, Hota KB, Hota SK, Prasad D, Ilavazhagan G (2013) Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol 145:431–441

    Article  PubMed  Google Scholar 

  • Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9:e105311

    Article  PubMed  PubMed Central  Google Scholar 

  • Bano D, Agostini M, Melino G, Nicotera P (2011) Ageing, neuronal connectivity and brain disorders: an unsolved ripple effect. Mol Neurobiol 43:124–130

    Article  CAS  PubMed  Google Scholar 

  • Bartsch T, Deuschl G (2010) Transient global amnesia: functional anatomy and clinical implications. Lancet Neurol 9:205–214

    Article  PubMed  Google Scholar 

  • Bekinschtein P, Cammarota M, Medina JH (2013) BDNF and memory processing. Neuropharmacol 76:677–683

    Article  Google Scholar 

  • Ben Achour S, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57:440–445

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai JP, Ah Park S, Han SK (2010) The methanolic extract of Withania somnifera ACTS on GABAA receptors in gonadotropin releasing hormone (GnRH) neurons in mice. Phytother Res 24:1147–1150

    PubMed  Google Scholar 

  • Bhattarai JP, Park SJ, Han SK (2013) Potentiation of NMDA receptors by Withania somnifera on hippocampal CA1 pyramidal neurons. Am J Chin Med 41:503–513

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2009) The Arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Budson AE, Price BH (2005) Memory dysfunction. N Engl J Med 352:692–699

    Article  CAS  PubMed  Google Scholar 

  • Candelario M, Cuellar E, Reyes-Ruiz JM, Darabedian N, Feimeng Z, Miledi R, Russo-Neustadt A, Limon A (2015) Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. J Ethnopharmacol 171:264–272

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro S, D’Agata V, Manickam P, Dufour F, Alkon DL (2002) Memory-specific temporal profiles of gene expression in the hippocampus. Proc Natl Acad Sci U S A99:16279–16284

    Article  Google Scholar 

  • Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356

    Article  CAS  PubMed  Google Scholar 

  • Deocaris CC, Widodo N, Wadhwa R, Kaul SC (2008) Merger of ayurveda and tissue culture-based functional genomics: inspirations from systems biology. J Transl Med 6:1–8

    Article  Google Scholar 

  • Di Carlo M, Giacomazza D, Picone P, Nuzzo D, San Biagio PL (2012) Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 46:1327–1338

    Article  PubMed  Google Scholar 

  • Gautam A, Kaul SC, Thakur MK (2015) Alcoholic extract of Ashwagandha leaves protects against amnesia by regulation of Arc function. Mol Neurobiol 53:1760–1769

    Article  PubMed  Google Scholar 

  • Gautam A, Wadhwa R, Thakur MK (2013) Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiol Learn Mem 106:177–184

    Article  PubMed  Google Scholar 

  • Gold PE (2006) The many faces of amnesia. Learn Mem 13:506–514

    Article  PubMed  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    CAS  PubMed  Google Scholar 

  • Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 158:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havekes R, Vecsey CG, Abel T (2012) The impact of sleep deprivation on neuronaland glial signaling pathways important for memory and synaptic plasticity. Cell Signal 24:1251–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holger J (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15:445–454

    Google Scholar 

  • Hubka P (2006) Neural network plasticity, BDNF and behavioral interventions in Alzheimer’s disease. Bratisl Lek Listy 107:395–401

    CAS  PubMed  Google Scholar 

  • Igaz LM, Bekinschtein P, Vianna MM, Izquierdo I, Medina JH (2004) Gene expression during memory formation. Neurotox Res 6:189–204

    Article  PubMed  Google Scholar 

  • Jansen RL, Brogan B, Whitworth AJ, Okello EJ (2014) Effects of five Ayurvedic herbs on locomotor behaviour in a Drosophila melanogaster Parkinson’s disease model. Phytother Res 28:1789–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaprakasam B, Padmanabhan K, Nair MG (2010) Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res 24:859–863

    CAS  PubMed  Google Scholar 

  • Johnson JL, Huang W, Roman G, Costa-Mattioli M (2015) TORC2: a novel target for treating age-associated memory impairment. Sci Rep 5:15193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd PM (2008) Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev 13:85–115

    PubMed  Google Scholar 

  • Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350

    Article  CAS  PubMed  Google Scholar 

  • Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6:e27265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426

    Article  PubMed  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2014) Effects of Ashwagandha roots of Withania somnifera on neurodegenerative diseases. Biol Pharm Bull 37:892–897

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry 32:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6:81–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Seal CJ, Howes MJ, Kite GC, Okello EJ (2010) In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxideand beta-amyloid (1-42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 24:1567–1574

    Article  CAS  PubMed  Google Scholar 

  • Kurapati KR, Atluri VS, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells:implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8:e77624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal G, Comprido D, Duarte CB (2013) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76:639–656

    Article  PubMed  Google Scholar 

  • Lee Y, Silva A (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LF, Durairajan SS, Lu JH, Ko I, Li M (2012) In vitro screening on amyloid precursor protein modulation of plants used in Ayurvedic and traditional Chinese medicine for memory improvement. J Ethnopharmacol 141:754–760

    Article  PubMed  Google Scholar 

  • Manjunath MJ, Muralidhara (2013) Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Am J Chin Med 41:503–513

    Article  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay G, Kopelman MD (2009) Psychogenic amnesia: when memory complaints are medically unexplained. Adv Psychiatr Treat 15:152–158

    Article  Google Scholar 

  • McKinney M, Jacksonville MC (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70:1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346

    CAS  PubMed  Google Scholar 

  • Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul ADT (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S (2009) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373

    Article  CAS  PubMed  Google Scholar 

  • Sankar SR, Manivasagam T, Krisnamurt A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: An analysis of behavioural and biochemical variables. Cell Mol Biol Lett 12:473–481

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  • Schulze ET, Geary EK, Susmaras MT, Paliga JT, Maki PM, Little DM (2011) Anatomical correlates of age-related working memory declines. J Aging Res 1–9

    Google Scholar 

  • Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor related protein in liver. Proc Natl Acad Sci USA 109:3510–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla KK, Mahdi AA, Mishra V, Rajender S, Sankhwar SN, Patel D, Das M (2011) Withania somnifera improves semen quality by combating oxidative stress and cell death and improving essential metal concentrations. Reprod Biomed Online 22:421–427

    Article  PubMed  Google Scholar 

  • Silva AF, Aguiar MS, Carvalho OS, Santana Lde N, Franco EC, Lima RR, Siqueira NV, Feio RA, Faro LR, Gomes-Leal W (2013) Hippocampal neuronal loss, decreased GFAP immunoreactivity and cognitive impairment following experimental intoxication of rats with aluminum citrate. Brain Res 1491:23–33

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 8:208–213

    PubMed  PubMed Central  Google Scholar 

  • Singh RH, Narsimhamurthy K, Singh G (2008) Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontol 9:369–374

    Article  Google Scholar 

  • Soman S, Korah PK, Jayanarayanan S, Mathew J, Paulose CS (2012) Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide A. Neurochem Res 37:1915–1927

    Article  CAS  PubMed  Google Scholar 

  • Tohda C (2008) Overcoming several neurodegenerative diseases by traditional medicines: the development of therapeutic medicines and unravelling pathophysiological mechanisms. Yakugaku Zasshi 128:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Tohda C, Joyashiki E (2009) Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET. Br J Pharmacol 157:1427–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ven Murthy MR, Ranjekar PK, Ramassamy C, Deshpande M (2010) Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha. Cent Nerv Syst Agents Med Chem 10:238–246

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winters M (2006) Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern Med Rev 11:269–277

    PubMed  Google Scholar 

  • Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91:267–270

    Article  CAS  PubMed  Google Scholar 

  • Young EJ, Briggs SB, Miller CA (2015) The Actin Cytoskeleton as a Therapeutic Target for the Prevention of Relapse to Methamphetamine Use. CNS Neurol Disord Drug Targets 14:731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work cited in this article from authors’ laboratory has been supported by grants from the Department of Science and Technology (SR/SO/HS-54/2008) and Department of Biotechnology (BT/PR3996/MED/97/57/2011), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Konar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Konar, A., Thakur, M.K. (2017). Cellular and Molecular Targets Underpinning Memory Enhancement by Ashwagandha. In: Kaul, S., Wadhwa, R. (eds) Science of Ashwagandha: Preventive and Therapeutic Potentials. Springer, Cham. https://doi.org/10.1007/978-3-319-59192-6_15

Download citation

Publish with us

Policies and ethics