Skip to main content

Whole Plant Foods in Aging and Disease

  • Chapter
  • First Online:
Dietary Patterns and Whole Plant Foods in Aging and Disease

Part of the book series: Nutrition and Health ((NH))

  • 1053 Accesses

Abstract

The rate and quality of the aging processes can be modified by consuming healthy diets overall and specific types of uniquely healthy foods. Healthy dietary guidelines generally recommend eating: 2 1/2 cups of a variety of vegetables/day; 2 cups of fruits, especially whole fruits/day; 6 servings of total grains at ≥3 servings of whole grains/day and ≤3 servings of refined grains/day, ≥4 weekly servings of legumes (dietary pulses or soy), and/or ≥5 weekly servings of nuts, and limiting consumption of red or processed meats, added saturated and trans-fat, sugar or sodium for improved odds for healthy aging and reduced chronic disease and premature mortality risk. Whole plant foods range widely in their health effects because of their variation in level and type of fiber, nutrients and phytochemicals, which can have differential effects on aging, chronic disease risk, cognitive function and longevity by their impact on weight regulation, lipoprotein concentrations and function, blood pressure, glucose-insulin homeostasis, oxidative stress, inflammation, endothelial health, hepatic function, adipocyte metabolism, visceral adiposity, brain neurochemistry and the microbiota ecosystem. For whole-grains, β-glucan-rich oats and barley lower total and LDL-cholesterol better than other cereal grains and whole-grain bread tends to be more beneficial than white bread in controlling weight gain and abdominal fat. For fruits and non-starchy vegetables, low energy dense and flavonoid and/or carotenoid rich varieties including apples, pears, berries, citrus fruits, cruciferous vegetables, and green leafy vegetables are especially associated with improved odds of healthy aging, cognitive performance and weight control, and reduced risk of chronic disease and premature death. Legumes (dietary pulses or soy) are associated with reduced risk of mortality, weight gain, and chronic disease. All nuts tend to have similar effects on managing body weight, and glycemic, lipoprotein and inflammatory profiles, but among nuts walnuts appear to be uniquely effective in promoting better vascular endothelial function such as flow mediated dilation , which helps to reduce the rate of vascular aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Olshansky SJ. Has the rate of human aging already been modified? Cold Spring Harb Perspect Med. 2015;5. https://doi.org/10.1101/cshperspect.a025965.

  2. Olshansky SJ, Hayflick L, Carnes BA. No truth to the fountain of youth. Sci Am. 2008;14:98–102.

    Google Scholar 

  3. WHO/FAO. Joint Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases. Diet. Nutrition and the Prevention of Chronic Diseases. WHO Technical Series. 2003:916.

    Google Scholar 

  4. Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;13:391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newman AB. Is the onset of obesity the same as aging? Proc Natl Acad U S A. 2015;112(52):E7163. https://doi.org/10.1073/pnas. 1515367112.

    Article  CAS  Google Scholar 

  6. Beltran-Sanchez H, Soneji S, Crimmins EM. Past, present, and future of healthy life expectancy. Cold Spring Harb Perspect Med. 2015;5. https://doi.org/10.1101/cshperspect.a025957.

  7. World Health Organization. WHO global status report on noncommunicable diseases 2010. Geneva: World Health Organization Press; 2010.

    Google Scholar 

  8. Avendano M, Kawachi I. Why do Americans have shorter life expectancy and worse health than people in other high-income countries? Annu Rev Public Health. 2014;35:307–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987;237:143–9. https://doi.org/10.1126/science.3299702.

    Article  CAS  PubMed  Google Scholar 

  10. Micha R, Khatibzadeh S, Shi P, et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open. 2015;5(9):e008705. https://doi.org/10.1136/bmjopen-2015-008705.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes, and health: current status and trends 2015. p. 1–78.

    Google Scholar 

  12. http://health.gov/dietaryguidelines/2015/guidelines/appendix-3/ Accessed June 21, 2016.

  13. Wu X, Beecher GR, Holden JM, et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 2004;52:4026–37.

    Article  CAS  PubMed  Google Scholar 

  14. Ros E, Hu FB. Consumption of plant seeds and cardiovascular health epidemiological and clinical trial evidence. Circulation. 2013;128:553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3:506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rebello CJ, Greenway FL, Finley JW. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev. 2014;15:392–407.

    Article  CAS  PubMed  Google Scholar 

  17. Gebhardt SE, Thomas R. Nutritive value of foods. Home and Garden Bulletin, Agriculture Research Service, United States Department of Agriculture, 2002,72:36–68

    Google Scholar 

  18. Dietary Guidelines Advisory Committee (DGAC). Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 2: Dietary patterns, foods and nutrients and health outcomes 2015. p. 1–35.

    Google Scholar 

  19. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. A comprehensive review. Circulation. 2017;133(2):187–225. https://doi.org/10.1161/CIRCULATIONAHA.11519.018585.

    Article  CAS  Google Scholar 

  20. Palmer AK, Tchkonia T, LeBrasseur NK, et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015;64:2289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Satija A, Bhupathiraju SN, Rimm EB, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13(6):e1002039. https://doi.org/10.1371/journal.pmed.1002039.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Micha R, Peñalvo JL, Cudhea F, et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317(9):912–24. https://doi.org/10.1001/jama.2017.0947.

    Article  PubMed  Google Scholar 

  23. William PG. Evaluation of the evidence between consumption of refined grains and health outcomes. Nutr Rev. 2012;70(2):80–99.

    Article  Google Scholar 

  24. Seal CJ, Brownlee IA. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc. 2015;74:313–9.

    Article  PubMed  Google Scholar 

  25. Slavin J. Why whole grains are protective: biological mechanisms. Proc Nutr Soc. 2003;62:129–34.

    Article  CAS  PubMed  Google Scholar 

  26. Cho SS, Qi L, Fahey Jr GC, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 2013;98: 594–619.

    Google Scholar 

  27. McGill CR, Fulgoni VL III, Devareddy L. Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National Health and Nutrition Examination Survey 2001-2010. Forum Nutr. 2015;7:1119–30.

    Google Scholar 

  28. Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://doi.org/10.1136/bmj.i2716.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei H, Gao Z, Liang R, et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2016;116(3):514–25. https://doi.org/10.1017/S0007114516001975.

    Article  CAS  PubMed  Google Scholar 

  30. Zong G, Gao A, FB H, Sun Q. Whole grain intake and mortality from all causes, cardiovascular disease, and cancer a meta-analysis of prospective cohort studies. Circulation. 2016;133:2370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li B, Zhang G, Tan M, et al. Consumption of whole grains in relation to mortality from all causes, cardiovascular disease, and diabetes. Dose–response meta-analysis of prospective cohort studies. Medicine. 2016;95:33(e4229); doi: org/10.1097/MD.00000000000429.

    Google Scholar 

  32. Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M, et al. Whole-grain intake and mortality from all causes, cardiovascular disease, and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2016;7:1052–65. https://doi.org/10.3945/an.11615.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu M, Huang T, Lee AM, et al. Ready-to-eat cereal consumption with total and cause -specific mortality: prospective analysis of 367,442 individuals. J Am Coll Nutr. 2016;35(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  34. Wu H, Flint AJ, Qi Q. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med. 2015;175(3):373–84.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang T, Xu M, Lee A, et al. Consumption of whole grains and cereal fiber and total and cause-specific mortality: prospective analysis of 367,442 individuals. BMC Med. 2015;13:59. https://doi.org/10.1186/s12916-015-0338-z.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnsen NF, Frederiksen K, Christensen J, et al. Whole-grain products and whole-grain types are associated with lower all-cause and cause-specific mortality in the Scandinavian HELGA cohort. Br J Nutr. 2015;114:608–23.

    Article  CAS  PubMed  Google Scholar 

  37. He M, van Dam RM, Rimm E, et al. Whole grain, cereal fiber, bran, and germ intake and the risks of all-cause and CVD-specific mortality among women with type 2 diabetes. Circulation. 2010;121(20):2162–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hollænder PLB, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr. 2015;102(3):556–72. https://doi.org/10.3945/ajcn.115.109165.

    Article  PubMed  CAS  Google Scholar 

  39. Ye EQ, Chacko SA, Chou EL, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–13.

    Article  CAS  PubMed  Google Scholar 

  40. Kelly SAM, Summerbell CD, Brynes A, et al. Wholegrain cereals for coronary heart disease. Cochrane Database Syst Rev. 2007; 2:CD005051; doi:10.1002/14651858.CD005051.pub2.

    Google Scholar 

  41. Flint AJ, FB H, Glynn RJ, et al. Whole grains and incident hypertension in men. Am J Clin Nutr. 2009;90:493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirwan JP, Malin SK, Scelsi AR, et al. Whole-grain diet reduces cardiovascular risk factors in overweight and obese adults: a randomized controlled trial. J Nutr. 2016;146:2244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tighe P, Duthie G, Vaughan N, et al. Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr. 2010;92:733–40.

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Huang Q, Shi W, et al. Meta-analysis of the association between whole and refined grain consumption and stroke risk based on prospective cohort studies, Asia Pacific. J Public Health. 2016;28(7):563–75.

    Google Scholar 

  45. Fang L, Li W, Zhang W, et al. Association between whole grain intake and stroke risk: evidence from meta-analysis. Int J Clin Exp Med. 2015;8(9):16978–83.

    PubMed  PubMed Central  Google Scholar 

  46. Liu S, Manson JE, Stampfer MJ, et al. Whole grain consumption and risk of ischemic stroke in women. JAMA. 2000;284(12):1534–40.

    Article  CAS  PubMed  Google Scholar 

  47. Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol. 2013;28:845–58. https://doi.org/10.1007/s10654-013-9852-5.

    Article  CAS  PubMed  Google Scholar 

  48. Chanson-Rolle A, Meynier A, Aubin F, et al. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS One. 2015;10(6):e0131377. https://doi.org/10.1371/journal.pone.0131377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sun Q, Spiegelman D, van Dam RM, et al. White rice, brown rice and risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Munter JSL, Hu FB, Spiegelman D, et al. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):e261. https://doi.org/10.1371/journal.pmed.0040261.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aune D, Chan DSM, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617. https://doi.org/10.1136/bmj.d6617.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Haas P, Machado MJ, Anton AA, et al. Effectiveness of whole grain consumption in the prevention of colorectal cancer: meta-analysis of cohort studies. Int J Food Sci Nutr. 2009;60(Suppl 6):1–13.

    Article  PubMed  Google Scholar 

  53. Kyrø C, Skeie G, Loft S, et al. Intake of whole grains from different cereal and food sources and incidence of colorectal cancer in the Scandinavian HELGA Cohort. Cancer Causes Control. 2013;24:1363–74. https://doi.org/10.1007/s10552-013-0215-z.

    Article  PubMed  Google Scholar 

  54. Milani C, Ferrario C, Turroni F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46. https://doi.org/10.1111/jhn.12371.

    Article  CAS  PubMed  Google Scholar 

  55. De Angelis M, Montemurno E, Vannini L, et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol. 2015;81:7945–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. vel Szic KS, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015; 7:33. doi: 10.1186/s13148-015-0068-2.

    Google Scholar 

  57. de Heredia FP, Gomez-Martınez S, Marcos A. Chronic and degenerative diseases, obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71:332–8.

    Article  PubMed  CAS  Google Scholar 

  58. Lefevre M, Jonnalagadda S. Effect of whole grains on markers of subclinical inflammation. Nutr Rev. 2012;70(7):387–96.

    Article  PubMed  Google Scholar 

  59. Puzianowska-Kuźnicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior Study. Immun Ageing. 2016;13:21. https://doi.org/10.1186/s12979-016-0076-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Forum Nutr. 2013;5:234–52.

    CAS  Google Scholar 

  61. Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280(4):339–49. https://doi.org/10.1111/joim.12508.

    Article  CAS  PubMed  Google Scholar 

  62. Keenan MJ, Marco ML, Ingram DK, Martin RJ. Improving health span via changes in gut microbiota and fermentation. Age. 2015;37(5):98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. O’Toole PWO, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5.

    Article  PubMed  CAS  Google Scholar 

  64. Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63(4):776–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Claesson MJ, Jeffery IB, Conde S. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–85.

    Article  CAS  PubMed  Google Scholar 

  66. Tuohy KM, Conterno L, Gasperotti M, Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem. 2012;60:8776–82.

    Article  CAS  PubMed  Google Scholar 

  67. Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64.

    Article  CAS  PubMed  Google Scholar 

  68. Vanegas SM, Meydani M, Barnett JB, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr. 2017;105(3):653–0. https://doi.org/10.3945/ajcn.116.146928.

    Article  CAS  Google Scholar 

  69. Martınez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7:269–80.

    Article  PubMed  CAS  Google Scholar 

  70. Price RK, Wallace JMW, Hamill LL, et al. Evaluation of the effect of wheat aleurone-rich foods on markers of antioxidant status, inflammation and endothelial function in apparently healthy men and women. Br J Nutr. 2012;108:1644–51.

    Article  CAS  PubMed  Google Scholar 

  71. Sepe A, Tchkonia T, Thomou T, et al. Aging and regional differences in fat cell progenitors - a mini-review. Gerontology. 2011;57:66–75. https://doi.org/10.1159/000279755.

    Article  PubMed  Google Scholar 

  72. Karl JP, Saltzman E. The role of whole grains in body weight regulation. Adv Nutr. 2012;3:697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pol K, Christensen R, Bartels EM, et al. Whole grain and body weight changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr. 2013;98:872–84.

    Article  CAS  PubMed  Google Scholar 

  74. Serra-Majem L, Bautista-Castaño I. Relationship between bread and obesity. Br J Nutr. 2015;113:S29–35. https://doi.org/10.1017/S0007114514003249.

    Article  CAS  PubMed  Google Scholar 

  75. McKeown M, Troy LM, Jacques PF, et al. Whole- and refined-grain intakes are differentially associated with abdominal visceral and subcutaneous adiposity in healthy adults: the Framingham Heart Study. Am J Clin Nutr. 2010;92:1165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karl JP, Meydani M, Barnett JB, et al. Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr. 2017;105(3):589–99. https://doi.org/10.3945/ajcn.116.139683.

    Article  CAS  PubMed  Google Scholar 

  77. Alfakry H, Malle E, Koyani CN, et al. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun. 2016;22(1):85–99. https://doi.org/10.1177/1753425915617521.

    Article  CAS  PubMed  Google Scholar 

  78. Nielsen SJ, Trak-Fellermeier MA, Joshipura K, Dye BA. Dietary fiber intake is inversely associated with periodontal disease among US adults. J Nutr. 2016;146:2530–6. https://doi.org/10.3945/jn.116.237065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Merchant AT, Pitiphat W, Franz M, Joshipura KJ. Whole-grain and fiber intakes and periodontitis risk in men. Am J Clin Nutr. 2006;83:1395–400.

    Article  CAS  PubMed  Google Scholar 

  80. World Health Organization. Diet, nutrition, and the prevention of chronic diseases. Geneva: World Health Organization; 1990. http://www.who.int/nutrition/publications/obesity/WHO_TRS_797/en/index.html. Accessed 16 April 2015

    Google Scholar 

  81. Bertoia ML, Rimm EB, Mukamal KJ, et al. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ. 2016;352:i17. doi.org/10.1136/bmj.i17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose response meta-analysis of prospective studies. Int J Epidemiol. 2017:1–28. https://doi.org/10.1093/ije/dyw319.

  83. Wang X, Ouyang Y, Liu J. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490. https://doi.org/10.1136/bmj.g4490.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bellavia A, Stilling F, Wolk A. High red meat intake and all-cause cardiovascular and cancer mortality: is the risk modified by fruit and vegetable intake? Am J Clin Nutr. 2016;104:1137–43.

    Article  CAS  PubMed  Google Scholar 

  85. Nguyen B, Bauman A, Gale E, et al. Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. Int J Behav Nutr Phys Act. 2016;13:9. https://doi.org/10.1186/s12966-016-0334-S.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of health survey for England data. J Epidemiol Community Health. 2014;68:856–62.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Leenders M, Sluijs I, Ros MM, et al. Fruit and vegetable consumption and mortality European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol. 2013;178(4):590–602.

    Article  PubMed  Google Scholar 

  88. Bellavia A, Larsson SC, Bottai M, et al. Fruit and vegetable consumption and all-cause mortality: a dose response analysis. Am J Clin Nutr. 2013;98:454–9.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Shu X-O, Xiang Y-B, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94:240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang H, Chen G, Liao D, et al. Effects of berries consumption on cardiovascular risk factors: a meta-analysis with trial sequential analysis of randomized controlled trials. Sci Rep. 2016;6:23625. https://doi.org/10.1038/srep23625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gan Y, Tong X, Li L, et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. Int J Cardiol. 2015;183:129–37.

    Article  PubMed  Google Scholar 

  92. Zhan J, Liu Y-J, Cai L-B, et al. Fruit and vegetable consumption and risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2015. https://doi.org/10.1080/10408398.2015.1008980.

  93. Hartley L, Igbinedion E, Holmes J, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Systematic Rev. 2013;6:CD009874; doi: 10.1002/14651858.CD009874.pub2.

    Google Scholar 

  94. Larsson SC, Wolk A. Potato consumption and risk of cardiovascular disease: 2 prospective cohort studies. Am J Clin Nutr. 2016;104:1245–53.

    Article  CAS  PubMed  Google Scholar 

  95. Miedema MD, Andrew Petrone A, Shikany JM, et al. Association of fruit and vegetable consumption during early adulthood with the prevalence of coronary artery calcium after 20 years of follow-up. The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Circulation. 2015;132:1990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bhupathiraju SN, Wedick NM, Pan A, et al. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr. 2013;98:1514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buil-Cosiales P, Toledo E, Salas-Salvadó J, et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the PREvención con Dieta MEDiterránea (PREDIMED) trial. Br J Nutr. 2016;116(3):534–46. https://doi.org/10.1017/S0007114516002099.

    Article  CAS  PubMed  Google Scholar 

  98. Li B, Wang L, Zhang D. Fruit and vegetable consumption and risk of hypertension: a meta-analysis. J Clin Hypertens (Greenwich). 2016;18(5):468–76.

    Article  Google Scholar 

  99. Wu L, Sun D, He Y. Fruit and vegetable consumption and incident hypertension: dose-response meta-analysis of prospective cohort studies. J Hum Hypertens. 2016;30(10):573–80. https://doi.org/10.1038/jhh.2016.44.

    Article  CAS  PubMed  Google Scholar 

  100. Borgi L, Muraki I, Satija A, et al. Fruit and vegetable consumption and the incidence of hypertension in three prospective cohort studies. Hypertension. 2016;67:288–93.

    CAS  PubMed  Google Scholar 

  101. Borgi L, Rimm EB, Willett WC, Forman JP. Potato intake and incidence of hypertension from three prospective US cohort studies. BMJ. 2016;353:i2351. https://doi.org/10.1136/bmj.i2351.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–24.

    Article  CAS  PubMed  Google Scholar 

  103. Hu D, Huang J, Wang Y, et al. Fruits and vegetables consumption and risk of stroke. A meta-analysis of prospective cohort studies. Stroke. 2014;45:1613–9.

    Article  CAS  PubMed  Google Scholar 

  104. Cassidy A, Bertoia M, Chiuve S, et al. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am J Clin Nutr. 2016;104:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oude Griep LM, Verschuren WMM, Kromhout D, et al. Colors of fruit and vegetables and 10-year incidence of stroke. Stroke. 2011;42:3190–5.

    Article  CAS  PubMed  Google Scholar 

  106. Joshipura KJ, Ascherio A, Manson JE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282:1233–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wang P-Y, Fang J-C, Gao Z-H, et al. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig. 2016;7:56–69. https://doi.org/10.1111/di.12376.

    Article  CAS  PubMed  Google Scholar 

  108. Li M, Fan Y, Zhang X, et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014;4(11):e005497. https://doi.org/10.1136/bmjopen-2014-005497.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xi B, Li S, Liu Z, et al. Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2014;9(3). https://doi.org/10.1371/journal.pone.0093471.

  110. Mamluk L, O’Doherty MG, Orfanos P, et al. Fruit and vegetable intake and risk of incident of type 2 diabetes: results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). Eur J Clin Nutr. 2016;71:83–91. https://doi.org/10.1038/ejcn.2016.143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Muraki I, Rimm EB, Willett WC, et al. Potato consumption and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care. 2016;39:376–84. https://doi.org/10.2337/dc15-0547.

    Article  CAS  PubMed  Google Scholar 

  112. Aune D, Lau R, Chan DSM, et al. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 2011;141:106–18.

    Article  PubMed  Google Scholar 

  113. Kunzmann AT, Coleman HG, Huang W-Y, et al. Fruit and vegetable intakes and risk of colorectal cancer and incident and recurrent adenomas in the PLCO cancer screening trial. Int J Cancer. 2016;138:1851–61.

    Article  CAS  PubMed  Google Scholar 

  114. Leenders M, Siersema PD, Overvad K, et al. Subtypes of fruit and vegetables, variety in consumption and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2015;137(11):2705–14. https://doi.org/10.1002/ijc.29640.

    Article  CAS  PubMed  Google Scholar 

  115. Hui C, Qi X, Qianyong Z, Xiaoli P, et al. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One. 2013;8(1):e54318. https://doi.org/10.1371/journal.pone.0054318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Aune D, Chan DS, Vieira AR, et al. Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;134(2):479–93. https://doi.org/10.1007/s10549-012-2118-1.

    Article  CAS  PubMed  Google Scholar 

  117. Aune D, Chan DS, Vieira AR, et al. Dietary compared with blood concentration of carotenoids and breast cancer risk: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2012;96:356–73.

    Article  CAS  PubMed  Google Scholar 

  118. Lamport DJ, Saunders C, Butler LT, Spencer JPR. Fruits, vegetables, 100% juices, and cognitive function. Nutr Rev. 2014;2(12):774–89.

    Article  Google Scholar 

  119. Loef M, Walach H. Fruit, vegetable and prevention of cognitive decline or dementia: a systematic review of cohort studies. J Nutr Health Aging. 2012;16(7):625–30.

    Article  CAS  Google Scholar 

  120. Neshatdousta S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging. 2016;4:81–93. https://doi.org/10.3233/NHA-1615.

    Article  Google Scholar 

  121. Kean RJ, Lamport DJ, Dodd GF, et al. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr. 2015;101:506–14.

    Article  CAS  PubMed  Google Scholar 

  122. Nooyens ACJ, Bueno-de-Mesquita HB, van Boxtel MPJ. Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Br J Nutr. 2011;106:752–61.

    Article  CAS  PubMed  Google Scholar 

  123. Peneau S, Galan P, Jeandel C, et al. Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. Am J Clin Nutr. 2011;94:1295–303.

    Article  CAS  PubMed  Google Scholar 

  124. Neville CE, Young IS, Gilchrist SECM, et al. Effect of increased fruit and vegetable consumption on physical function and muscle strength in older adults. Age. 2013;35:2409–22. https://doi.org/10.1007/s11357-013-9530-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gibson A, Edgar JD, Neville CE, et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am J Clin Nutr. 2012;96:1429–36.

    Article  CAS  PubMed  Google Scholar 

  126. Ribeiro SM, Morley JE, Malmstrom TK, Miller DK. Fruit and vegetable intake and physical activity as predictors of disability risk factors in African-American middle-aged individuals. J Nutr Health Aging. 2016;20(9):891–6. https://doi.org/10.1007/s12603-016-0780-4.

    Article  CAS  PubMed  Google Scholar 

  127. Lian F, Wang J, Huang X, et al. Effect of vegetable consumption on the association between peripheral leucocyte telomere length and hypertension: a case–control study. BMJ Open. 2015;5:e009305. https://doi.org/10.1136/bmjopen-2015-009305.

    Article  PubMed  PubMed Central  Google Scholar 

  128. McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE. Pulse consumption, satiety, and weight management. Adv Nutr. 2010;1:17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Messina V. Nutritional and health benefits of dried beans. Am J Clin Nutr. 2014;100(suppl):437S–42S.

    Article  CAS  PubMed  Google Scholar 

  130. Farvid MS, Malekshah AF, Pourshams A, et al. Dietary protein sources and all-cause and cause-specific mortality: The Golestan Cohort Study in Iran. Am J Prev Med. 2017;52(2):237–48. https://doi.org/10.1016/j.amepre.2016.10.041.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chang W-C, Wahlqvist ML, Chang H-Y, et al. A bean-free diet increases the risk of all-cause mortality among Taiwanese women: the role of the metabolic syndrome. Public Health Nutr. 2011;15(4):663–72. https://doi.org/10.1017/S1366890011002151.

    Article  PubMed  Google Scholar 

  132. Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13:217–20.

    PubMed  Google Scholar 

  133. Marventano S, Pulido MI, Sánchez-González C, et al. Legume consumption and CVD risk: a systematic review and meta-analysis. Public Health Nutr. 2017;20(2):245–54.

    Article  PubMed  Google Scholar 

  134. Tokede OA, Onabanjo TA, Yansane A, et al. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114:831–43.

    Article  CAS  PubMed  Google Scholar 

  135. Ha V, John L, Sievenpiper JL, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186(8):252–62.

    Article  Google Scholar 

  136. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bazzano LA, Thompson AM, Tees MT, et al. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103.

    Article  CAS  PubMed  Google Scholar 

  138. Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr. 2011;30(2):79–91.

    Article  CAS  PubMed  Google Scholar 

  139. Liua Z-M, Hob SC, Chen Y-M, Woo J. Effect of soy protein and isoflavones on blood pressure and endothelial cytokines: a 6-month randomized controlled trial among postmenopausal women. J Hypertens. 2013;31(2):384–92. https://doi.org/10.1097/HJH.0b013e32835c0905.

    Article  CAS  Google Scholar 

  140. Pittaway JK, Robertson IK, Ball MJ. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc. 2008;108:1009–13.

    Article  CAS  PubMed  Google Scholar 

  141. He J, Gu D, Wu X, et al. Effect of soybean protein on blood pressure. A randomized, controlled trial. Ann Intern Med. 2005;143(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  142. Liu ZM, Chen YM, Ho SC. Effects of soy intake on glycemic control: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2011;93:1092–101.

    Article  CAS  PubMed  Google Scholar 

  143. Sievenpiper JL, Kendall CW, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52:1479–95.

    Article  CAS  PubMed  Google Scholar 

  144. Ding M, Pan A, Manson JE, et al. Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr. 2016;70(12):1381–7. https://doi.org/10.1038/ejcn.2016.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Villegas R, Gao YT, Yang G, et al. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr. 2008;87:162–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jenkins DJA, Kendall WC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus. A randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60.

    Article  CAS  PubMed  Google Scholar 

  147. Yu Y, Jing X, Li H, et al. Soy isoflavone consumption and colorectal cancer risk: a systematic review and meta-analysis. Sci Rep. 2016;6:25939. https://doi.org/10.1038/srep25939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhu B, Sun Y, Qi L, et al. Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies. Sci Rep. 2015;5:8797. https://doi.org/10.1038/srep08797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yang G, Shu X-O, Li H, et al. Prospective cohort study of soy food intake and colorectal cancer risk in women. Am J Clin Nutr. 2009;89:577–83.

    Article  CAS  PubMed  Google Scholar 

  150. Chen M, Rao Y, Zheng Y, et al. Association between soy isoflavone intake and breast cancer risk for pre- and postmenopausal women: a meta-analysis of epidemiological studies. PLoS One. 2014;9(2):e89288. https://doi.org/10.1371/journal.pone.0089288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Xie Q, Chen M-L, Qin Y, et al. Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr. 2013;22(1):118–27. https://doi.org/10.6133/apjcn.2013.22.1.16.

    CAS  PubMed  Google Scholar 

  152. Chen X, Huang Y, Cheng HG. Lower intake of vegetables and legumes associated with cognitive decline among illiterate elderly Chinese: a 3-year cohort study. J Nutr Health Aging. 2012;16(6):548–52.

    Article  CAS  Google Scholar 

  153. St. John JA, Henderson VW, Hodis HN, et al. Associations of urine excretion of isoflavonoids with cognition in postmenopausal women in the Women’s Isoflavone Soy Health Clinical Trial. J Am Geriatr Soc. 2014;62(4):629–35. https://doi.org/10.1111/jgs.12752.

    Article  PubMed  Google Scholar 

  154. Kreijkamp-Kaspers S, Kok L, Gobbee DE, et al. Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women a randomized controlled trial. JAMA. 2004;292:65–74.

    Article  CAS  PubMed  Google Scholar 

  155. Jackson CL, Hu FB. Long-term associations of nut consumption with body weight and obesity. Am J Clin Nutr. 2014;100(suppl):408S–11S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kris-Etherton PM, Hu FB, Ros E, Sabaté J. The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr. 2008;138(9):1746S–51S.

    Article  CAS  PubMed  Google Scholar 

  157. Brown RC, Tey SL, Gray AR, et al. Nut consumption is associated with better nutrient intakes: results from the 2008/09 New Zealand Adult Nutrition Survey. Br J Nutr. 2016;115:105–12.

    Article  CAS  PubMed  Google Scholar 

  158. Novotny JA, Gebauer SK, Baer DJ. Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am J Clin Nutr. 2012;96:296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nielsen SJ, Kit BK, Ogden CL. Nut consumption among U.S. adults, 2009-2010. NCHS data brief, no 176. Hyattsville, MD: National Center for Health Statistics 2014.

    Google Scholar 

  160. Grosso G, Estruch R. Nut consumption and age-related disease. Maturitas. 2015;84:11–6.

    Article  PubMed  CAS  Google Scholar 

  161. Aune D, Keum NN, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14:207. https://doi.org/10.1186/s12916-016-0730-3.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mayhew AJ, de Souza RJ, Meyre D, et al. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br J Nutr. 2016;115:212–25.

    Article  CAS  PubMed  Google Scholar 

  163. Wu L, Wang Z, Zhu J, et al. Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis. Nutr Rev. 2015;73(7):409–25.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Guo K, Zhou Z, Jiang Y, et al. Meta-analysis of prospective studies on the effects of nut consumption on hypertension and type 2 diabetes mellitus. J Diabetes. 2015;7(2):202–12; doi: 1111/1753-0407.12173.

    Google Scholar 

  165. Zhang Z, Xu G, Wei Y, et al. Nut consumption and risk of stroke. Eur J Epidemiol. 2015;30(3):189–96. https://doi.org/10.1007/s10654-015-9999-3.

    Article  CAS  PubMed  Google Scholar 

  166. Luo C, Zhang Y, Ding Y, et al. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:256–69.

    Article  CAS  PubMed  Google Scholar 

  167. Zhou D, Yu H, He F, et al. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2014;100:270–7.

    Article  CAS  PubMed  Google Scholar 

  168. Wang W, Yang M, Kenfield SA, et al. Nut consumption and prostate cancer risk and mortality. Br J Cancer. 2016;115(3):371–4. https://doi.org/10.1038/bjc.2016.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang M, FB H, Giovannucci E, et al. nut consumption and risk of colorectal cancer in women. Eur J Clin Nutr. 2016;70(3):333–7. https://doi.org/10.1038/ejcn.2015.66.

    Article  CAS  PubMed  Google Scholar 

  170. Luu HN, Blot WJ, Xiang Y-B, et al. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern Med. 2015;175(5):755–66.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gopinath B, Flood VM, Burlutksy G, Mitchell P. Consumption of nuts and risk of total and cause-specific mortality over 15 years. Nutr Metab Cardiovasc Dis. 2015;25(12):1125–31.

    Article  CAS  PubMed  Google Scholar 

  172. Hshieh TT, Petrone AB, Gaziano JM, Djousse L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am J Clin Nutr. 2015;101(2):407–12.

    Article  CAS  PubMed  Google Scholar 

  173. Bao Y, Han J, FB H, et al. Association of nut consumption with total and cause-specific mortality. N Engl J Med. 2013;369(21):2001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bao Y, FB H, Giovannucci EL, et al. Nut consumption and risk of pancreatic cancer in women. Br J Cancer. 2013;109:2911–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jenab M, Ferrari P, Slimani N, et al. Association of nut and seed intake with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2004;13:1595–603.

    CAS  PubMed  Google Scholar 

  176. Guasch-Ferré M, Bulló M, Martínez-González MA, et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013;11:164. https://doi.org/10.1186/1741-7015-11-164.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Toledo E, Salas-Salvado J, Donat-Vargas D, et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial. A randomized clinical trial. JAMA Intern Med. 2015;175(11):1752–60. https://doi.org/10.1001/jamainternalmed2015.48.38.

    Article  PubMed  Google Scholar 

  178. Salas-Salvado J, Bullo M, Estruch R, et al. Prevention of diabetes with Mediterranean diets. Ann Intern Ned. 2014;160:1–10.

    Article  Google Scholar 

  179. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Article  CAS  PubMed  Google Scholar 

  180. Musa-Veloso K, Paulionis L, Poon T, Lee HY. The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci. 2016;5:e34. https://doi.org/10.1017/jns.2016.19.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Del Gobbo LC, Falk MC, Feldman R, et al. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr. 2015;102:1347–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Mohammadifard N, Salehi-Abargouei A, Salas-Salvadó J, et al. The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr. 2015;101:966–82.

    Article  CAS  PubMed  Google Scholar 

  183. Viguiliouk E, Kendall CWC, Mejia SB, et al. Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One. 2014;9(7). https://doi.org/10.1371/journal.pone.0103376.

  184. Banel DK, Hu FB. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr. 2009;90:56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Blanco Mejia S, Kendall CWC, Viguiliouk E, et al. Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2014;4(7):e004660. https://doi.org/10.1136/bmjopen-2013-004660.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Flores-Mateo G, Rojas-Rueda D, Basora J, et al. Nut intake and adiposity: meta-analysis of clinical trials. Am J Clin Nutr. 2013;97:1346–55.

    Article  CAS  PubMed  Google Scholar 

  187. Xiao Y, Huang W, Peng C, et al. Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2017. https://doi.org/10.1016/j.clnu.2017.04.011.

  188. Gulati S, Misra A, Pandey RM. Effect of almond supplementation on glycemia and cardiovascular risk factors in Asian Indians in North India with type 2 diabetes mellitus: a 24-week study. Metab Syndr Relat Disord. 2017;15(2):98–105. https://doi.org/10.1089/met.2016.0066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Njike VY, Ayettey R, Petraro P, et al. Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res Care. 2015;3:e000115. https://doi.org/10.1136/bmjdrc-2015-000115.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sauder KA, McCrea CE, Ulbrecht JS, et al. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: a randomized trial. Metabolism. 2015;64(11):1521–9. https://doi.org/10.1016/j.metabol.2015.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103. https://doi.org/10.1001/jamaiternmed.2015.1668.

    Article  PubMed  Google Scholar 

  192. O’Brien J, Okereke O, Devore E, et al. Long-term intake of nuts in relation to cognitive function in older women. J Nutr Health Aging. 2014;18(5):496–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Sánchez-Villegas A, Galbete C, Martinez-González MA. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The PREDIMED-NAVARRA Randomized Trial. Nutr Neurosci. 2011;14(5):195–201.

    Article  PubMed  CAS  Google Scholar 

  194. Lee J-Y, Jun N-R, Yoon D, et al. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr. 2015;69(9):1048–52. https://doi.org/10.1038/ejcn.2015.58.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A: Estimated Range of Energy, Fiber, Nutrient and Phytochemical Composition of Whole or Minimally Processed Plant Foods/100 g Edible Portion

Appendix A: Estimated Range of Energy, Fiber, Nutrient and Phytochemical Composition of Whole or Minimally Processed Plant Foods/100 g Edible Portion

Components

Whole-grains

Fresh fruit

Dried fruit

Vegetables

Legumes

Nuts/seeds

Nutrients and phytochemicals

Wheat, oats, barley, brown rice, whole grain bread, cereal, pasta, rolls, and crackers

Apples, pears, bananas, grapes, oranges, blueberries, strawberries,

and avocados

Dates, dried figs, apricots, cranberries, raisins and prunes

Potatoes, spinach, carrots, peppers, lettuce, green beans, cabbage, onions, cucumber, cauliflower, mushrooms, and broccoli

Lentils, chickpeas, split peas, black beans, pinto beans, and soy beans

Almonds, Brazil nuts, cashews, hazelnuts, macadamias, pecans, walnuts, peanuts, sunflower seeds, and flaxseed

Energy (kcal)

110–350

30–170

240–310

10–115

85–170

520–700

Protein (g)

2.5–16

0.5–2.0

0.1–3.4

0.2–5.0

5.0–17

7.8–24

Available Carbohydrate (g)

23–77

1.0–25

64–82

0.2–25

10–27

12–33

Fiber (g)

3.5–18

2.0–7.0

5.7–10

1.2–9.5

5.0–11

3.0–27

Total fat (g)

0.9–6.5

0.0–15

0.4–1.4

0.2–1.5

0.2–9.0

46–76

SFAa (g)

0.2–1.0

0.0–2.1

0.0

0.0–0.1

0.1–1.3

4.0–12

MUFAa (g)

0.2–2.0

0.0–9.8

0.0–0.2

0.1–1.0

0.1–2.0

9.0–60

PUFAa (g)

0.3–2.5

0.0–1.8

0.0–0.7

0.0.0.4

0.1–5.0

1.5–47

Folate (μg)

4.0–44

<5.0–61

2–20

8.0–160

50–210

10–230

Tocopherols (mg)

0.1–3.0

0.1–1.0

0.1–4.5

0.0–1.7

0.0–1.0

1.0–35

Potassium (mg)

40–720

60–500

40–1160

100–680

200–520

360–1050

Calcium (mg)

7.0–50

3.0–25

10–160

5.0–200

20–100

20–265

Magnesium (mg)

40–160

3.0–30

5.0–70

3.0–80

40–90

120–400

Phytosterols (mg)

30–90

1.0–83

1.0–54

110–120

70–215

Polyphenols (mg)

70–100

50–800

24–1250

120–6500

130–1820

Carotenoids (μg)

25–6600

0.6–2160

10–20,000

50–600

0.0–1200

  1. U.S. Department of Agriculture, Agriculture Research Service, Nutrient Data Laboratory. 2014. USDA National Nutrient Database for Standard Reference, Release 27.
  2. https://www.ars.usda.gov/nutrientdata. Accessed 17 February 2015
  3. Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes, and health: current status and trends. 2015;1–78
  4. Ros E, Hu FB. Consumption of plant seeds and cardiovascular health epidemiological and clinical trial evidence. Circulation. 2013;128:553–565
  5. USDA. What we eat in America, NHANES 2011–2012, individuals 2 years and over (excluding breast-fed children). Available: www.ars.usda.gov/nea/bhnrc/fsrg
  6. Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3:506–516
  7. Rebello CJ, Greenway FL, Finley JW. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev. 2014;15:392–407
  8. Gebhardt SE, Thomas RG. Nutritive Value of Foods. 2002; U.S. Department of Agriculture, Agricultural Research Service, Home and Garden Bulletin 72
  9. Holden JM, Eldridge AL, Beecher GR, et al. Carotenoid content of U.S. foods: an update of the database. J Food Comp An. 1999;12:169–196
  10. Lu Q-Y, Zhang Y, Wang Y, et al. California Hass avocado: profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J Agric Food Chem. 2009;57(21):10,408–10,413
  11. Wu X, Beecher GR, Holden JM, et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 2004;52:4026–4037
  12. Dahl WJ, Steward ML. Position of the Academy of Nutrition and Dietetics: health implication of dietary fiber. J Acad Nutr Diet. 2015;115(11):1861–1870
  13. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office. 2010; Table B2.4; http://www.choosemyplate.gov/ Accessed 8.22.2015
  14. http://wholegrainscouncil.org/whole-grains-101/what-counts-as-a-serving. Accessed 12.26.2015
  15. aSFA (saturated fat), MUFA (monounsaturated fat) and PUFA (polyunsaturated fat)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Whole Plant Foods in Aging and Disease. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59180-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59180-3_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59179-7

  • Online ISBN: 978-3-319-59180-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics