Skip to main content

Major Lifestyles and Phenotypes in Aging and Disease

  • Chapter
  • First Online:
Dietary Patterns and Whole Plant Foods in Aging and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

Since an estimated 70 to 80% of the rate of aging is related to lifestyle choices, it is possible for individuals to significantly influence their odds of healthy aging and longevity, even if healthy lifestyles are adopted later in life. Unhealthy or premature aging, which is largely associated with excessive intake of Western energy dense diets and sedentary lifestyles, involves a complex interplay between obesity and related metabolic dysfunctional effects leading to increased risk of chronic disease and mortality and reduced healthy life expectancy. In general, obesity, especially central adiposity, represents a state of accelerated aging as adipose cells produce adipokines, which can lead to increased systemic and tissue inflammation and peripheral insulin resistance. Metabolic syndrome, type 2 diabetes and prediabetes, and sarcopenia are major unhealthy aging phenotypes, which can be prevented by appropriate lifestyle choices. The concept of healthy aging includes healthy life expectancy (e.g., absence or delay of chronic diseases and the maintenance of cognitive, physical, and other functions with limited dependence on family members or extended care assistant living) and longevity. Since a higher percentage of people worldwide are surviving to older ages, it is critical to promote optimal healthy aging lifestyle habits to assure quality of life for aging individuals and their families, and for sustainable healthcare cost management. The probability of healthy aging can be significantly increased by following a healthy lifestyle even if it is adopted in middle age adulthood or older. These lifestyle choices include: adhering to a healthy dietary pattern, increasing physical activity most days of the week, achieving and maintaining a healthy body weight and waist size, smoking avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mathers JC. Impact of nutrition on the ageing process. Br J Nutr. 2015;113:S18–22.

    Article  CAS  PubMed  Google Scholar 

  2. Olshansky SJ, Hayflick L, Carnes BA. No truth to the fountain of youth. Sci Am. 2008;14:98–102.

    Google Scholar 

  3. Kirkwood TBL. Why and how are we living longer? Exp Physiol. 2017;102(9):1067–74.

    Google Scholar 

  4. Zhavoronkov A, Bhupinder B. Classifying aging as a disease in the context of ICD-11. Front Genet. 2015;6(3262):1–8.

    Google Scholar 

  5. Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olshansky SJ. Has the rate of human aging already been modified? Cold Spring Harb Perspect Med. 2015;5(12). https://doi.org/10.1101/cshperspect.a025965.

  7. Olshansky SJ, Passaro DJ, Hershow RC, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45.

    Article  CAS  PubMed  Google Scholar 

  8. Global Burden of Disease Study (GBD). Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study. 2013. Lancet. 2015;385(9963):117–71.

    Article  Google Scholar 

  9. Beltran-Sanchez H, Soneji S, Crimmins EM. Past, present, and future of healthy life expectancy. Cold Spring Harb Perspect Med 2015;5(11). doi: https://doi.org/10.1101/cshperspect.a025957.

  10. Murray CJ, Vos T, Lozano R, Naghavi M, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2013;380:2197–223.

    Article  Google Scholar 

  11. World Health Organization. WHO global status report on noncommunicable diseases. Geneva: World Health Organization Press; 2010. p. 2010.

    Google Scholar 

  12. Murray CJ, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013;369(5):448–57.

    Article  CAS  PubMed  Google Scholar 

  13. Lafortune L, Martin S, Kelly S, et al. Behavioural risk factors in mid-life associated with successful aging, disability, dementia and frailty in later life: a rapid systematic review. PLOS ONE. 2016:11(2):e0144405.

    Google Scholar 

  14. Avendano M, Kawachi I. Why do Americans have shorter life expectancy and worse health than people in other high-income countries? Annu Rev Public Health. 2014;35:307–25.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nevalainen T, Kananen L, Marttila, et al. Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin Epigenetics. 2017; 9:20. 

    Google Scholar 

  16. Lunenfeld B, Stratton P. The clinical consequences of an ageing world and preventive strategies. Best Pract Res Clin Obstet Gynaecol. 2013;27(5):643–59.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tyrovolas S, Haro JM, Mariolis A, et al. The role of energy balance in successful aging among elderly individuals: The Multinational MEDIS Study. J Aging Health. 2015;27(8):1375–91.

    Article  PubMed  Google Scholar 

  18. Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;13:391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newman AB. Is the onset of obesity the same as aging? PNAS. 2015. doi-https://doi.org/10.1073/pnas.1515367112.

  20. Beers MH. The Merck manual of health & aging. Whitehouse Station: Merck Laboratories; 2004. p. 2.

    Google Scholar 

  21. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief. 2015;219:1–7.

    Google Scholar 

  22. Verdile G, Keane KN, Cruzat VF, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators Inflamm. 2015;2015:105828. https://doi.org/10.1155/2015/105828.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kullmann S, Callaghan MF, Heni M, et al. Specific white matter tissue microstructure changes associated with obesity. Neuroimage. 2016;125:36–44.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eckel N, Meidtner K, Kalle-Uhlmann T, et al. Metabolically healthy obesity and cardiovascular events: a systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23(9):956–66. https://doi.org/10.1177/2047487315623884.

    Article  PubMed  Google Scholar 

  25. Roberson LL, Aneni EC, Maziak W, et al. Beyond BMI: the “metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality—a systematic review. BMC Public Health. 2014. https://doi.org/10.1186/1471-2458-14-14.

  26. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann Intern Med. 2013;159:758–69.

    Article  PubMed  Google Scholar 

  27. Pujia A, Gazzaruso C, Ferro Y, et al. Individuals with metabolically healthy overweight/obesity have higher fat utilization than metabolically unhealthy individuals. Forum Nutr. 2016;8:2. https://doi.org/10.3390/nu8010002.

    Google Scholar 

  28. Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    Article  PubMed  Google Scholar 

  29. Lorenzini A. How much should we weigh for a long and healthy life span? The need to reconcile caloric restriction versus longevity with body mass index versus mortality data. Front Endocrinol. 2014;5(121):1–8. https://doi.org/10.3389/fendo.2014.00121.

    Google Scholar 

  30. Kodama S, Horikawa C, Fujihara K, et al. Quantitative relationship between body weight gain in adulthood and incident type 2 diabetes: a meta-analysis. Obes Rev. 2014;15(3):202–14.

    Article  CAS  PubMed  Google Scholar 

  31. Cao Y, Ma J. Body mass index, prostate cancer–specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res. 2011;4(4):486–501.

    Article  CAS  Google Scholar 

  32. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aune D, Sen A, Prasad M, et al. BMI and all-cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://doi.org/10.1136/bmj.i2156.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Veronese N, Li Y, Manson JE, et al. Combined associations of body weight and lifestyle factors with all cause and cause specific mortality in men and women: prospective cohort study. BMJ. 2016;355: i5855. doi.org/10.1136/bmj.i5855.

  35. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CABMI. All-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014;99:875–90.

    Article  CAS  PubMed  Google Scholar 

  36. Bowman K, Atkins JL, Delgado J, et al. Central adiposity and the overweight risk in aging: follow-up of 130,473 UK Biobank participants. Am J Clin Nutr. 2017;106:130–5.

    Google Scholar 

  37. Graf CE, Herrmann FR, Spoerri A, et al. Impact of body composition changes on risk of all-cause mortality in older adults. Clin Nutr 2016; 35(6):1499–1505. doihttps://doi.org/10.1016/j.clnu. 2016.04.003.

  38. Bea JW, Thomson CA, Wertheim BC, et al. Risk of mortality according to body mass index and body composition among postmenopausal women. Am J Epidemiol. 2015;182(7):585–96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang C, Rexrode KM, van Dam RM, et al. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: a sixteen years of follow-up in US women. Circulation. 2008;117:1658–67.

    Article  PubMed  Google Scholar 

  40. Pang Q, Zhang J-Y, Song S-D, et al. Central obesity and nonalcoholic fatty liver disease risk after adjusting for body mass index. World J Gastroenterol. 2015;21(5):1650–62.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wohlfahrt P, Somers VK, Cifkova R, et al. Relationship between measures of central and general adiposity with aortic stiffness in the general population. Atherosclerosis. 2014;235(2):625–31. https://doi.org/10.1016/j.atherosclerosis.2014.05.958.

    Article  CAS  PubMed  Google Scholar 

  42. Aronis KN, Wang N, Phillips CL, et al. Associations of obesity and body fat distribution with incident atrial fibrillation in the biracial health aging and body composition cohort of older adults. Am Heart J. 2015;170(3):498–505.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun Q, Townsend MK, Okereke OI, et al. Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study. BMJ. 2009;339. https://doi.org/10.1136/bmj.b3796.

  44. Batsis JA, Zbehlik AJ, Barre LK, et al. Impact of obesity on disability, function, and physical activity: data from the Osteoarthritis Initiative. Scand J Rheumatol. 2015;44(6):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roos E, Laaksonen M, Rahkonen O, et al. Relative weight and disability retirement: a prospective cohort study. Scand J Work Environ Health. 2013;39(3):259–67.

    Article  PubMed  Google Scholar 

  46. Rillamas-Sun E, LaCroix AZ, Waring ME, et al. Obesity and survival to age 85 years without major disease or disability in older women. JAMA Intern Med. 2014;174(1):98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Batsis JA, Zbehlik AJ, Barre LK, et al. The impact of waist circumference on function and physical activity in older adults: longitudinal observational data from the osteoarthritis initiative. Nutr J. 2014;13:81. https://doi.org/10.1186/1475-2891-13-81.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beavers KM, Beavers DP, Nesbit BA, et al. Effect of an 18-month physical activity and weight loss intervention on body composition in overweight and obese older adults. Obesity (Silver Spring). 2014;22(2):325–31.

    Article  Google Scholar 

  49. Porter Starr KN, Pieper CF, Orenduff MC, et al. Improved function with enhanced protein intake per meal: a pilot study of weight reduction in frail, obese older adults. J Gerontol A Biol Sci Med Sci. 2016;71(10):1369–75. https://doi.org/10.1093/gerona/glv210.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fung TT, Schulze M, Manson JE, et al. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med. 2004;164:2235–40.

    Article  PubMed  Google Scholar 

  51. Heidemann C, Schulze MB, Franco OH, et al. Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation. 2008;118:230–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. Am J Med. 2013;126:411–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Assmann KE, Lassale C, Andreeva VA, et al. A healthy dietary pattern at midlife, combined with a regulated energy intake, is related to increased odds for healthy aging. J Nutr. 2015;145:2139–45.

    Article  CAS  PubMed  Google Scholar 

  54. Ashby-Mitchell K, Peeters A, Anstey KJ. Role of dietary pattern analysis in determining cognitive status in elderly Australian adults. Forum Nutr. 2015;7:1052–67.

    Google Scholar 

  55. Bouchard C, Blair SN, Katzmarzyk PT. Less sitting, more physical activity, or higher fitness? Mayo Clin Proc. 2015;90(11):1533–40.

    Article  PubMed  Google Scholar 

  56. Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One 2013; 8(11):e80000. doi: https://doi.org/10.1371/journal.pone.0080000.

  57. Wen CP, Wai JPM, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378:1244–53.

    Article  PubMed  Google Scholar 

  58. Stenholm S, Koster A, Valkeinen H, et al. Association of physical activity history with physical function and mortality in old age. J Gerontol A Biol Sci Med Sci. 2016;71(4):496–501. https://doi.org/10.1093/gerona/glv111.

    Article  PubMed  Google Scholar 

  59. Batsis JA, Germain CM, Vasquez E, et al. Physical activity predicts higher physical function in older adults: The Osteoarthritis Initiative. J Phys Act Health. 2016;13(1):6–16. https://doi.org/10.1123/jpah.2014-0531.

    Article  PubMed  Google Scholar 

  60. Barry VW, Baruth M, Beets MW, et al. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56:382–90.

    Article  PubMed  Google Scholar 

  61. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6(2):109–20.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rossi AP, Fantin F, Bertassello P, et al. Chapter 13. Visceral fat predicts ectopic fat accumulation mechanisms and health consequences. Nutrition in the prevention and treatment of abdominal. Obesity. 2014:141–50.

    Google Scholar 

  63. Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301:H1205–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ribeiro SML, Kehayias JJ. Sarcopenia and the analysis of body composition. Adv Nutr. 2014;5:260–7. https://doi.org/10.3945/an.113.005256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grundy SM. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur J Clin Invest. 2015;45(11):1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ley SH, Hamdy O, Mahan V, Prevention HFB. Management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kaur J. A comprehensive review on metabolic syndrome. Cardio Res Pract. 2014;2014:943162. https://doi.org/10.1155/2014/943162.

    Google Scholar 

  69. Mottillo S, Filion KBJ, Genest J, et al. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56:1113–32.

    Article  PubMed  Google Scholar 

  70. Ma Y, Olendzki BC, Wang J, et al. Single-component versus multicomponent dietary goals for the metabolic syndrome. A randomized trial. Ann Intern Med. 2015;162:248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. A randomized trial. JAMA. 2004;292:1440–6.

    Article  CAS  PubMed  Google Scholar 

  72. Murray MT. Diabetes mellitus (Chapter 161). In: Pizzorno JE, Murray MT, editors. Textbook of natural medicine. 4th ed. Philadelphia: Elsevier; 2013. p. 1320–48.

    Chapter  Google Scholar 

  73. FB H, Manson E, Stampfer MJ. Diet, lifestyle and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.

    Article  Google Scholar 

  74. Alhazmi A, Stojanovski E, McEvoy M, Garg ML. The association between dietary patterns and type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Hum Nutr Diet. 2014;27:251–60.

    Article  CAS  PubMed  Google Scholar 

  75. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev. 2014;15:504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barry E, Roberts S, Oke J, et al. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ. 2017; 356:i6538. doi: org/https://doi.org/10.1136/bmj.i6538.

  77. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004;287:C834–43.

    Article  CAS  PubMed  Google Scholar 

  78. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia: protein, amino acid metabolism and therapy. Opin Clin Nutr Metab Care. 2009;12(1):86–90.

    Article  CAS  Google Scholar 

  79. Moore DR. Keeping older muscle “young” through dietary protein and physical activity. Adv Nutr. 2014;5(5):599S–607S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. von Haehling S, Morley JE, Anker SD. From muscle wasting to sarcopenia and myopenia: update 2012. J Cachexia Sarcopenia Muscle. 2012;3:213–7.

    Article  Google Scholar 

  81. Norton C, Toomey C, McCormack WG, et al. Protein supplementation at breakfast and lunch for 24 weeks beyond habitual intake increases whole-body lean tissue mass in healthy older adults. J Nutr. 2016;146(1):65–9. https://doi.org/10.3945/jn.115.219022.

    Article  PubMed  Google Scholar 

  82. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110:1097–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Suominen MH, Jyvakorpi SK, Pitkala KH, et al. Nutritional guidelines for older people in Finland. J Nutr Health Aging. 2014;18(10):861–7.

    Article  CAS  PubMed  Google Scholar 

  84. de Gonzalez AB, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9.

    Article  PubMed Central  Google Scholar 

  85. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CABMI. All-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014;99:875–90.

    Article  CAS  PubMed  Google Scholar 

  86. Corrada MM, Kawas CH, Mozaffar F, Paganini-Hill A. Association of body mass index and weight change with all-cause mortality in the elderly. Am J Epidemiol. 2006;163(10):938–49.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Willcox BJ, He Q, Chen R, et al. Midlife risk factors and healthy survival in men. JAMA. 2006;296:2343–50.

    Article  CAS  PubMed  Google Scholar 

  88. Franzon K, Zethelius B, Cederholm T, Kilander L. Modifiable midlife risk factors, independent aging, and survival in older men: report on long-term follow-up of the Uppsala longitudinal study of adult men cohort. J Am Geriatr Soc. 2015;63(5):877–85.

    Article  PubMed  Google Scholar 

  89. Fine JT, Colditz GA, Coakley EH, et al. A prospective study of weight change and health -related quality of life in women. JAMA. 1999;282:2136–42.

    Article  CAS  PubMed  Google Scholar 

  90. Strandberg TE, Sirola J, Pitkata KH, et al. Association of midlife obesity and cardiovascular risk with old age frailty: a 26-year follow-up of initially healthy men. Int Obes (Lond). 2012;36(9):1153–7.

    Article  CAS  Google Scholar 

  91. Anstey KJ, Cherbuin N, Budge M, et al. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2012;12:e426–37.

    Article  Google Scholar 

  92. Schwingshackl L, Hoffmann G, Kalle-Uhlmann T, et al. Fruit and vegetable consumption and changes in anthropometric variables in adult populations: a systematic review and meta-analysis of prospective cohort studies. PLoS One. 2015;10(10). https://doi.org/10.1371/journal.pone.0140846.

  93. Harmon BE, Boushey CJ, Shvetsov YB, et al. Associations of key diet-quality indexes with mortality in the multiethnic cohort: the dietary patterns methods project. Am J Clin Nutr. 2015;101:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schwingshackl L, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: a systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2015;15(5):780–800.e5. https://doi.org/10.1016/j.jand.2014.12.009.

    Article  Google Scholar 

  95. Freitas-Simoes TM, Ros E, Sala-Vila A. Nutrients, foods, dietary patterns and telomere length: update of epidemiological studies and randomized trials. Metabolism. 2016;65(4):406–15.

    Article  CAS  PubMed  Google Scholar 

  96. WHO. Healthy diet. 2015; http://www.who.int/mediacentre/factsheets/fs394/en. Accessed 10.27.2015.

  97. Jankovic N, Geelen A, Streppel MT, et al. Adherence to a healthy diet according to the World Health Organization guidelines and all-cause mortality in elderly adults from Europe and the United States. Am J Epidemiol. 2014;180(10):978–88.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jankovic N, Geelen A, Streppel MT, et al. WHO guidelines for a healthy diet and mortality from cardiovascular disease in European and American elderly: the CHANCES project. Am J Clin Nutr. 2015;102:745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. US Department of Health and Human Services. 2008 Physical activity guidelines for Americans. Washington, DC: US Dept of Health and Human Services; 2008.

    Google Scholar 

  100. World Health Organization. Global recommendations on physical activity for health. World Health Organization website. 2010; http://www.who.int/dietphysicalactivity/publications/9789241599979/en/. accessed November 23, 2015.

  101. Arem H, Moore SC, Patel A, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175(6):959–67.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  103. Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol. 2011;40:1382–400.

    Article  PubMed  Google Scholar 

  104. Katzmarzyk PT, Janssen I, Ardern CI. Physical inactivity, excess adiposity and premature mortality. Obes Rev. 2003;4(4):257–90.

    Article  CAS  PubMed  Google Scholar 

  105. Loef M, Walach H. The combined effects of healthy lifestyle behaviors on all-cause mortality: a systematic review and meta-analysis. Prev Med. 2012;55:163–70.

    Article  PubMed  Google Scholar 

  106. Patel YR, Gadiraju TV, Gaziano JM, Djoussé L. Adherence to healthy lifestyle factors and risk of death in men with diabetes mellitus: The Physicians’ Health Study. Clin Nutr. 2016; doi: 10.1016/j.clnu.2016.11.003.

    Google Scholar 

  107. Prinelli F, Yannakoulia M, Anastasiou CA, et al. Mediterranean diet and other lifestyle factors in relation to 20-year all-cause mortality: a cohort study in an Italian population. Br J Nutr. 2015;113(6):1003–11.

    Article  CAS  PubMed  Google Scholar 

  108. May AM, Struijk EA, Fransen HP, et al. The impact of a healthy lifestyle on disability-adjusted life years: a prospective cohort study. BMC Med. 2015;13:39. https://doi.org/10.1186/s12916-015-0287-6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Petersen KEN, Johnsen NF, Olsen A, et al. The combined impact of adherence to five lifestyle factors on all-cause, cancer and cardiovascular mortality: a prospective cohort study among Danish men and women. Br J Nutr. 2015;113(5):849–58.

    Article  CAS  PubMed  Google Scholar 

  110. Behrens G, Fischer B, Kohler S, et al. Healthy lifestyle behaviors and decreased risk of mortality in a large prospective study of U.S. women and men. Eur J Epidemiol. 2013;28(5):361372. https://doi.org/10.1007/s10654-013-9796-9.

    Article  Google Scholar 

  111. van den Brandt PA. The impact of a Mediterranean diet and healthy lifestyle on premature mortality in men and women. Am J Clin Nutr. 2011;94:913–20.

    Article  PubMed  Google Scholar 

  112. Walter S, Mackenbach J, Vokó Z, et al. Genetic, physiological, and lifestyle predictors of mortality in the general population. Am J Public Health. 2012;102:e3–e10.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. https://doi.org/10.1186/s13059-015-0584-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Major Lifestyles and Phenotypes in Aging and Disease. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59180-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59180-3_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59179-7

  • Online ISBN: 978-3-319-59180-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics