Potential of Rhizobia as Plant Growth-Promoting Rhizobacteria

  • Luciano Kayser VargasEmail author
  • Camila Gazolla Volpiano
  • Bruno Brito Lisboa
  • Adriana Giongo
  • Anelise Beneduzi
  • Luciane Maria Pereira Passaglia


Nitrogen-fixing plant growth-promoting rhizobacteria collectively known as rhizobia have been extensively investigated due to their exceptional quality to establish functional symbiosis with legumes. As a result of this incredible interaction, they supply nitrogen to plants, which is one of the major nutrient elements. Rhizobia are capable of colonizing the rhizosphere of nonhost plants (nonlegumes) thus living within plant tissues as endophytes. Due to these properties and their ability to secrete phytohormones and siderophores, and solubilize insoluble phosphate, besides eliciting plant defense reactions against phytopathogens, rhizobia have been placed along the organisms with high potential to act as efficient plant growth-promoting rhizobacteria (PGPR). Here, the mechanisms adopted by rhizobia to facilitate plant growth and yields are highlighted. In addition, the application of rhizobia as PGPR in farming practices is underlined. The information available on rhizobial application and the number of rhizobia stored in different culture collection centers around the world may provide an important microbiological resource to reduce the use of expensive synthetic fertilizers and pesticides in agricultural practices.


Niocontrol Diazotroph Plant growth regulators Rhizobia sustainable agriculture 


  1. Abd-Alla MH (1994a) Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases. Biol Fertil Soils 18:216–218CrossRefGoogle Scholar
  2. Abd-Alla MH (1994b) Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett Appl Microbiol 18:294–296CrossRefGoogle Scholar
  3. Adesemoye AO, Ugoji EO (2009) Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria in West Africa. Arch Phytopathol Plant Prot 42:188–200CrossRefGoogle Scholar
  4. Ahemad M, Khan MS (2009) Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotech 12:213–222CrossRefGoogle Scholar
  5. Ahemad M, Khan MS (2010) Comparative toxicity of selected insecticides to pea plants and growth promotion. Crop Protect. doi: 10.1016/j.cropro.2010.01.005
  6. Ahmad E, Khan MS, Zaidi A (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104CrossRefGoogle Scholar
  7. Alikhani H, Saleh-Rastin N, Antoun H (2007) Phosphate solubilization activity of rhizobia native to Iranian soils. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 35–41CrossRefGoogle Scholar
  8. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.) Plant Soil 204:57–67CrossRefGoogle Scholar
  9. Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046PubMedCrossRefGoogle Scholar
  10. Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206PubMedPubMedCentralCrossRefGoogle Scholar
  11. Batista JSS, Hungria M, Barcellos FG, Ferreira MC, Mendes IC (2007) Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a Cerrados soil. Microb Ecol 53:270–284PubMedCrossRefGoogle Scholar
  12. Bhagat D, Sharma P, Sirari A, Kumawat KC (2014) Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int J Curr Microbiol Appl Sci 3:923–930Google Scholar
  13. Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay SN (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Bio Fert Soils 48:173–182CrossRefGoogle Scholar
  14. Biswas J, Ladha J, Dazzo F (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650Google Scholar
  15. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880PubMedCrossRefGoogle Scholar
  16. Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GE (2014) The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26:4680–4701PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cattelan A, Hartel P, Fuhrmann J (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680CrossRefGoogle Scholar
  18. Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772PubMedPubMedCentralGoogle Scholar
  19. Chacon N, Silver WL, Dubinsky EA, Cusack DF (2006) Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78:67–84CrossRefGoogle Scholar
  20. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chakraborty U, Purkayastha R (1984) Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30:285–289PubMedCrossRefGoogle Scholar
  22. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130CrossRefGoogle Scholar
  23. Chao WL (1990) Antagonistic activity of Rhizobium spp. against beneficial and plant pathogenic fungi. Lett Appl Microbiol 10:213–215CrossRefGoogle Scholar
  24. Chen W-M, De Faria SM, James EK, Elliott GN, Lin K-Y, Chou J-H, Sheu S-Y, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  25. Chen N, Jin M, Qu HM, Chen ZQ, Chen ZL, Qiu ZG, Wang XW, Li JW (2012) Isolation and characterization of Bacillus sp. producing broad-spectrum antibiotics against human and plant pathogenic fungi. J Microbiol Biotechnol 22:256–563PubMedCrossRefGoogle Scholar
  26. Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cladera-Olivera F, Caron GR, Motta AS, Souto AA, Brandelli A (2006) Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Can J Microbiol 52:533–539PubMedCrossRefGoogle Scholar
  28. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  29. Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189CrossRefGoogle Scholar
  30. Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401PubMedCrossRefGoogle Scholar
  31. Dazzo FB, Yanni YG (2006) The natural Rhizobium-cereal crop association as an example of plant-bacterial interaction. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 109–127CrossRefGoogle Scholar
  32. Deshwal V, Dubey R, Maheshwari D (2003) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448Google Scholar
  33. Diep CN, So DB, Trung NB, Lam PVH (2016) Effects of rhizobia and phosphate-solubilizing bacteria on soybean (Glycine max L. Merr.) cultivated on ferralsols of Daklak Province, Vietnam. Int J Pharm Pharm Sci 5:318–333Google Scholar
  34. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  35. Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis: I. Endogenous gibberellins of Lima Bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224PubMedPubMedCentralCrossRefGoogle Scholar
  36. Domit L, Costa J, Vidor C, Pereira J (1990) Inoculation of cereal seeds with Bradyrhizobium japonicum and its effect on soyabeans grown in succession. R Bras Ci Solo 14:313–319Google Scholar
  37. Duodu S, Bhuvaneswari T, Stokkermans TJ, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089CrossRefGoogle Scholar
  38. Dutta S, Mishra A, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461CrossRefGoogle Scholar
  39. Elbadry M, Taha R, Eldougdoug K, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113:247–251CrossRefGoogle Scholar
  40. Ferguson L, Lessenger JE (2006) Plant growth regulators. In: Lessenger JE (ed) Agricultural medicine. Springer, New York, pp 156–166CrossRefGoogle Scholar
  41. Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138:2396–2405PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fernando WD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964CrossRefGoogle Scholar
  43. Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF, Martínez-Molina E, Velázquez ME, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882CrossRefGoogle Scholar
  44. Foster RC (1998) Microenvironments of soil microorganisms. Bio Fert Soils 6:189–203Google Scholar
  45. Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120PubMedCrossRefGoogle Scholar
  46. Gandhi PM, Narayanan K, Naik P, Sakthivel N (2009) Characterization of Chryseobacterium aquaticum strain PUPC1 producing a novel antifungal protease from rice rhizosphere soil. J Microbiol Biotechnol 19:99–107Google Scholar
  47. García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix A, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:38122CrossRefGoogle Scholar
  48. Ghosh PK, Kumar De T, Maiti TK (2015) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015. Article ID 575067Google Scholar
  49. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  50. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  51. Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239CrossRefGoogle Scholar
  52. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  53. Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  54. Gutierrez-Zamora M, Martınez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.) J Biotechnol 91:117–126PubMedCrossRefGoogle Scholar
  55. Hafeez F, Safdar M, Chaudhry A, Malik K (2004) Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Anim Prod Sci 44:617–622CrossRefGoogle Scholar
  56. Hafeez FY, Naeem FI, Naeem R, Zaidi AH, Malik KA (2005) Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ Exp Bot 54:142–147CrossRefGoogle Scholar
  57. Hayashi S, Gresshoff PM, Ferguson BJ (2014) Mechanistic action of gibberellins in legume nodulation. J Integr Plant Biol 56:971–978PubMedCrossRefGoogle Scholar
  58. Hemissi I, Mabrouk Y, Abdi N, Bouraoui M, Saidi M, Sifi B (2011) Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr J Microbiol Res 5:4080–4090Google Scholar
  59. Hossain MS, Mårtensson A (2008) Potential use of Rhizobium spp. to improve fitness of non-nitrogen-fixing plants. Acta Agric Scand 58:352–358Google Scholar
  60. Hungria M, Campo R (2005) Fixação biológica do nitrogênio em sistemas agrícolas. In: Congresso brasileiro de ciência do solo. SBCS, UFPE Embrapa Solos Pernambuco Rio de JaneiroGoogle Scholar
  61. Imen H, Neila A, Adnane B, Manel B, Mabrouk Y, Saidi M, Bouaziz S (2015) Inoculation with phosphate solubilizing Mesorhizobium strains improves the performance of chickpea (Cicer aritenium L.) under phosphorus deficiency. J Plant Nutr 38:1656–1671CrossRefGoogle Scholar
  62. Kacem M, Kazouz F, Merabet C, Rezki M, de Lajudie P, Bekki A (2009) Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas Aceites 60:139–146CrossRefGoogle Scholar
  63. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of bacterial secondary metabolite, 2,4-diacetylphoroglucinol. Mol Plant Microbe Interact 5:4–13CrossRefGoogle Scholar
  64. Khaitov B, Kurbonov A, Abdiev A, Adilov M (2016) Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian J Soil Sci 5:105–112CrossRefGoogle Scholar
  65. Khan M, Zaidi A, Wani P (2009) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Netherlands, pp 551–570. doi: 10.1007/978-90-481-2666-8_34 CrossRefGoogle Scholar
  66. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56:73–98CrossRefGoogle Scholar
  67. Kloepper JW (1978) Schroth MN Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the fourth international conference on plant pathogenic bacteria, pp 879–882Google Scholar
  68. Kloepper JA (2003) Review of mechanisms for plant growth promotion by PGPR. In: Sixth international PGPR workshop, pp 5–10Google Scholar
  69. Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232CrossRefGoogle Scholar
  70. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  71. Kumar G, Raghu Ram M (2014) Phosphate solubilizing rhizobia isolated from Vigna trilobata. Am J Microbiol Res 2:105–109CrossRefGoogle Scholar
  72. LA Favre JS, Eaglesham ARJ (1986) Rhizobitoxine: a phytotoxin of unknown function which is commonly produced by bradyrhizobia. Plant Soil 92:443–452CrossRefGoogle Scholar
  73. Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lindström K, Martinez-Romero M (2005) International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 26 July 2004, Toulouse, France. Int J Syst Evol Microbiol 55:1383–1383CrossRefGoogle Scholar
  75. Loper J, Schroth M (1986) Influence of bacteria sources of indol-3-acetic acid on root elongation of sugar beet. Phytopathol 76:386–389CrossRefGoogle Scholar
  76. López-López A, Rogel MA, Ormeno-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327PubMedCrossRefGoogle Scholar
  77. Lukkani NJ, Reddy ECS (2014) Evaluation of plant growth promoting attributes and biocontrol potential of native fluorescent pseudomonas spp. against Aspergillus niger causing collar rot of ground nut. Int J Plant Anim Environ Sci 4:267–262Google Scholar
  78. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402PubMedPubMedCentralCrossRefGoogle Scholar
  79. Machado RG, Sá ELS, Bruxel M, Giongo A, Santos NS, Nunes AS (2013) Indoleacetic acid producing rhizobia promote growth of Tanzania grass (Panicum maximum) and Pensacola grass (Paspalum saurae). Int J Agric Biol 15:827–834Google Scholar
  80. Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434PubMedCrossRefGoogle Scholar
  81. Messele B, Pant LM (2012) Effects of inoculation of Sinorhizobium ciceri and phosphate solubilizing bacteria on nodulation, yield and nitrogen and phosphorus uptake of chickpea (Cicer arietinum L.) in Shoa Robit Area. J Biofertil Biopestici 3:129CrossRefGoogle Scholar
  82. Minamisawa K (1990) Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. Plant Cell Physiol 31:81–89Google Scholar
  83. Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275CrossRefGoogle Scholar
  84. Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.) Curr Microbiol 52:383–389PubMedCrossRefGoogle Scholar
  85. Muthuselvan I, Balagurunathan R (2013) Siderophore production from Azotobacter sp. and its application as biocontrol agent. Int J Curr Res Rev 5:23–35Google Scholar
  86. Nabti E, Bensidhoum L, Tabli N, Dahel D, Weiss A, Rothballer M, Schmid M, Hartman A (2014) Growth inhibition of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium isolated from salt affected rhizosphere soil in northwestern Algeria. Eur J Soil Biol 61:20–26CrossRefGoogle Scholar
  87. Nandi A, Sengupta B, Sen S (1982) Utility of Rhizobium in the phyllosphere of crop plants in nitrogen-free sand culture. J Agric Sci 98:167–171CrossRefGoogle Scholar
  88. O'hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876PubMedPubMedCentralGoogle Scholar
  89. Okazaki S, Sugawara M, Yuhashi K-I, Minamisawa K (2007) Rhizobitoxine-induced chlorosis occurs in coincidence with methionine deficiency in soybeans. Ann Bot 100:55–59PubMedPubMedCentralCrossRefGoogle Scholar
  90. Omar S, Abd-Alla M (1998) Biocontrol of fungal root rot diseases of crop plants by the use of Rhizobia and Bradyrhizobia. Folia Microbiol 43:431–437CrossRefGoogle Scholar
  91. Panhwar QA, Naher UA, Jusop S, Othman R, Latif MA, Ismail MR (2014) Biochemical and molecular characterization of potential phosphate solubilizing bacteria in acid sulphate soils and their beneficial effects on rice growth. PLoS One 9:e97241PubMedPubMedCentralCrossRefGoogle Scholar
  92. Peix A, Rivas-Boyero A, Mateos P, Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110CrossRefGoogle Scholar
  93. Prabhavati E, Anthony J (2012) Bacteriocin production by rhizobia isolated from root nodules of Horse gram. Bangladesh J Med Sci 11:28–32CrossRefGoogle Scholar
  94. Prasad JS, Reddy RS, Reddy PN, Rajashekar AU (2014) Isolation, screening and characterization of Azotobacter from rhizospheric soils for different plant growth promotion (PGP) & antagonistic activities and compatibility with agrochemicals: an in vitro study. Ecol Environ Conserv 20:959–966Google Scholar
  95. Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biol 13:63–77CrossRefGoogle Scholar
  96. Prayitno J, Stefaniak J, McIver J, Weinman J, Dazzo F, Ladha J, Barraquio W, Yanni Y, Rolfe B (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Funct Plant Biol 26:521–535Google Scholar
  97. Probanza A, Lucas J, Acero N, Mañero FG (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant Soil 182:59–66CrossRefGoogle Scholar
  98. Probanza A, Mateos J, García JL, Ramos B, De Felipe M, Mañero FG (2001) Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microb Ecol 41:140–148PubMedCrossRefGoogle Scholar
  99. Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids – a new class of phytohormones. Curr Sci 82:1239–1245Google Scholar
  100. Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198CrossRefGoogle Scholar
  101. Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Protect 115:108–113CrossRefGoogle Scholar
  102. Richardson A, Hadobas P, Simpson R (2001) Phytate as a source of phosphorus for the growth of transgenic Trifolium subterraneum. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén NV, Wittenmayer L (eds) Plant nutrition. Springer, Netherlands, pp 560–561CrossRefGoogle Scholar
  103. Robleto EA, Borneman J, Triplett EW (1998) Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture-independent perspective. Appl Environ Microbiol 64:5020–5022PubMedPubMedCentralGoogle Scholar
  104. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339Google Scholar
  105. Rogers NJ, Carson KC, Glenn AR, Dilworth MJ, Hughes MN, Poole RK (2001) Alleviation of aluminum toxicity to Rhizobium leguminosarum bv. viciae by the hydroxamate siderophore vicibactin. Biometals 14:59–66PubMedCrossRefGoogle Scholar
  106. Roy N, Chakrabartty PK (2000) Effect of aluminum on the production of siderophore by Rhizobium sp. (Cicer arietinum). Curr Microbiol 41:5–10PubMedCrossRefGoogle Scholar
  107. Ruangsanka S (2014) Identification of phosphate-solubilizing fungi from the asparagus rhizosphere as antagonists of the root and crown rot pathogen Fusarium oxysporum. Science Asia 40:16–20CrossRefGoogle Scholar
  108. Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lon B 264:341–346CrossRefGoogle Scholar
  109. Sahasrabudhe MM (2011) Screening of rhizobia for indole acetic acid production. Ann Biol Res 2:460–468Google Scholar
  110. Sahgal M, Johri B (2003) The changing face of rhizobial systematics. Curr Sci 84:43–48Google Scholar
  111. Sangeetha G, Thangavelu R, Usha Rani S, Muthukumar A, Udayakumar R (2010) Induction of systemic resistance by mixtures of antagonist bacteria for the management of crown rot complex on banana. Acta Physiol Plant 32:1177–1187CrossRefGoogle Scholar
  112. Saravanakumar D, Kumar CV, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protect 26:556–565CrossRefGoogle Scholar
  113. Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada CE, Gabiatti NC, Prates F, Stumpf R (2008) Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Cienc Rural 38:658–664CrossRefGoogle Scholar
  114. Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046PubMedPubMedCentralGoogle Scholar
  115. Sivasakthivelan P, Saranraj P (2013) Azospirillum and its formulations: a review. Int J Microbiol Res 4:275–287Google Scholar
  116. Solano BR, Maicas JB, FJG M (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, Germany, pp 41–52CrossRefGoogle Scholar
  117. Sturtevant DB, Taller BJ (1989) Cytokinin Production by Bradyrhizobium japonicum. Plant Physiol 89:1247–1252PubMedPubMedCentralCrossRefGoogle Scholar
  118. Susilowati LE, Syekhfani S (2014) Characterization of phosphate solubilizing bacteria isolated from Pb contaminated soils and their potential for dissolving tricalcium phosphate. J Degrad Mining Lands Manag 1:57–62Google Scholar
  119. Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K-i, Uchiumi T, Higashi S, Han S-Y, Yoshida S, Asami T (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45:914–922PubMedCrossRefGoogle Scholar
  120. Tagore GS, Namdeo SL, Sharma SK, Kumar N (2013) Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. Int J Agron 2013. Article ID 581627Google Scholar
  121. Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K-i, Hashiguchi M, Akashi R, Hirsch A (2010) Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav 5:440–443PubMedPubMedCentralCrossRefGoogle Scholar
  122. Vardhini BV, Ram Rao SS (1999) Effect of brassionosteriods on nodulation and nitrogenase activity in groundnut (Arachis hypogaea L.) Plant Growth Regul 28:165–167CrossRefGoogle Scholar
  123. Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Passaglia LMP (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. R Bras Ci Solo 33:1227–1235CrossRefGoogle Scholar
  124. Vershinina Z, Baimiev AK, Blagova D, Knyazev A, Baimiev AK, Chemeris A (2011) Bioengineering of symbiotic systems: Creation of new associative symbiosis with the use of lectins on the example of tobacco and oil seed rape. Appl Biochem Microbiol 47:304–310CrossRefGoogle Scholar
  125. Vershinina ZR, Baymiev AK, Blagova DK, Chubukova OV, Baymiev AK, Chemeris AV (2012) Artificial colonization of non-symbiotic plants roots with the use of lectins. Symbiosis 56:25–33CrossRefGoogle Scholar
  126. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  127. Wang TL, Wood EA, Brewin NJ (1982) Growth regulators, and nodulation in peas. The cytokinin content of a wild type and a Ti plasmid containing strain of R. leguminosarum. Planta 155:350–355PubMedCrossRefGoogle Scholar
  128. Warda A, Zoubida B-h, Faiza BZ, Yamina A, Bekki A (2014) Selection and characterization of inhibitor agents (bacteriocin like) produced by rhizobial strains associated to Medicago in western Algeria. Int J Agric Crop Sci 7:393Google Scholar
  129. Weir B (2016) The current taxonomy of rhizobia. New Zealand rhizobia website. Accessed 22 Jan 2016
  130. Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14CrossRefGoogle Scholar
  131. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  132. Yanni YG, Rizk R, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  133. Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Funct Plant Biol 28:845–870CrossRefGoogle Scholar
  134. Yu X, Liu X, Zhu T, Liu G, Mao C (2012) Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Euro J Soil Biol 50:112–117CrossRefGoogle Scholar
  135. Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:PMC110596CrossRefGoogle Scholar
  136. Zaidi A, Khan MS, Ahemad M, Oves M, Wani P (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 23–50CrossRefGoogle Scholar
  137. Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hort 193:231–239CrossRefGoogle Scholar
  138. Ziaf K, Latif U, Amjad M, Shabir MZ, Asghar W, Ahmed S, Ahmad I, Jahangir MM, Anwar W (2016) Combined use of microbial and synthetic amendments can improve radish (Raphanus sativus) yield. J Environ Agric Sci 6:10–15Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luciano Kayser Vargas
    • 1
    Email author
  • Camila Gazolla Volpiano
    • 2
  • Bruno Brito Lisboa
    • 1
  • Adriana Giongo
    • 3
  • Anelise Beneduzi
    • 2
  • Luciane Maria Pereira Passaglia
    • 2
  1. 1.Fundação Estadual de Pesquisa AgropecuáriaLaboratory of Agricultural ChemistryPorto AlegreBrazil
  2. 2.Department of Genetics, Institute of BiosciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Institute of Petroleum and Natural ResourcesPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations