Advertisement

Perspectives of Using Endophytic Microbes for Legume Improvement

  • Muhammad NaveedEmail author
  • Muhammad Zahir Aziz
  • Muhammad Yaseen
Chapter

Abstract

Plant growth-promoting rhizobacteria (PGPR) have long been used as inoculant for optimizing legume production, but their survival under hostile field conditions is conflicted. Endophytes among PGPR are the microorganisms that live inside different plant tissues for at least part of their life without harming their host. Beneficial endophytes facilitate plant growth by enhancing uptake of plant nutrients, protecting plants from phytopathogens and increasing tolerance against environmental stresses. Nevertheless, the cellular interactions between pulses and endophytes for improving legumes growth and yields are variable. The endophytic colonization and diversity, various growth promontory aspects, and recent advances in endophyte-legume interactions with consequential impact on legume production have been discussed comprehensively. Considering the importance of endophytic microorganisms, it is likely that their use in agricultural practices will play a pivotal role and offer environmentally friendly strategy for increasing legume productivity while decreasing chemical inputs.

Keywords

Endophyte Legumes Endophyte-legume interaction Growth improvement 

References

  1. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WDM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1–10CrossRefGoogle Scholar
  2. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecol 58:921–929CrossRefGoogle Scholar
  3. Agrios GN (2005) Plant pathology, 4th edn. Academic, AmsterdamGoogle Scholar
  4. Ait Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans PsJN. Appl Environ Microbiol 72:7246–7252PubMedPubMedCentralCrossRefGoogle Scholar
  5. Akhgar M, Arzanlou R, Bakker PAHM, Hamidpour M (2014) Characterization of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24:461–468CrossRefGoogle Scholar
  6. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398PubMedPubMedCentralCrossRefGoogle Scholar
  7. Annapurna K, Ramadoss D, Bose P, Kumar LV (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max L.) Plant Soil 373:641–648CrossRefGoogle Scholar
  8. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 8:673–677Google Scholar
  9. Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, New YorkGoogle Scholar
  10. Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822CrossRefGoogle Scholar
  11. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894PubMedCrossRefGoogle Scholar
  12. Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53CrossRefGoogle Scholar
  13. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefGoogle Scholar
  14. Braun EJ (1990) Colonization of resistant and susceptible maize plants by Envinia stewartii strains differing in exopolysaccharide production. Physiol Mol Plant Pathol 36:363–379CrossRefGoogle Scholar
  15. Brittenham GM (1994) New advances in iron metabolism, iron deficiency and iron overload. Curr Opin Hematol 1:549–556Google Scholar
  16. Carlos MH, Stefani PV, Janette AM, Melani MS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 189:53–61CrossRefGoogle Scholar
  17. Celloto VR, Oliveira AJB, Gonçalves JE, Watanabe CSF, Matioli G, Gonçalves RAC (2012) Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. Sci World J 2012:495970. doi: 10.1100/2012/495970 CrossRefGoogle Scholar
  18. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induced root hair curling, inhibits Sclerotinia sclerotiorum and enhance growth of Indian mustard (Brassica compestris). Braz J Microbiol 38:24–30CrossRefGoogle Scholar
  19. Chen W, Sun L, Lu J, Bi L, Wang L, Wei G (2015) Diverse nodule bacteria were associated with Astragalus species in arid region of northwestern China. J Basic Microbiol 55:121–128PubMedCrossRefGoogle Scholar
  20. Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):fiw083. doi: 10.1093/femsec/fiw083 PubMedCrossRefGoogle Scholar
  21. Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417PubMedCrossRefGoogle Scholar
  22. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  23. De Meyer SE, Beuf KD, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11CrossRefGoogle Scholar
  24. Dudeja SS, Narula N (2008) Molecular diversity of root nodule forming bacteria. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms. Academic World International, Bhopal, pp 1–24Google Scholar
  25. Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260PubMedCrossRefGoogle Scholar
  26. Dunne C, Moenne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved control of Pythium-mediated damping off of sugar beet. Plant Pathol 47:299–307CrossRefGoogle Scholar
  27. Egamberdieva D, Lugtenberg B (2014) Use of plant growth promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96CrossRefGoogle Scholar
  28. Eisenhauer N (2012) Aboveground–belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil 35:1–22CrossRefGoogle Scholar
  29. Emmert EA, Klimowicz AK, Thomas MG, Handelsman J (2004) Genetics of zwittermicin a production by Bacillus cereus. Appl Environ Microbiol 70:104–113PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC, London, pp 77–86Google Scholar
  31. Fernandez O, Theocharis A, Bordiec S, Feil R, Jasquens L, Clement C, Fontaine F, Ait Barka E (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25:496–504PubMedCrossRefGoogle Scholar
  32. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium melilotiand alfafa (Medicago satia). J Bacteriol 178:7159–7166PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gao K, Mendgen K (2006) Seed-transmitted beneficial endophytic Stagonospora sp. can penetrate the walls of the root epidermis, but does not proliferate in the cortex, of Phragmites australis. Can J Bot 84:981–988CrossRefGoogle Scholar
  34. Germaine K (2007) Construction of endophytic xenobiotic degrader bacteria for improving the phytoremediation of organic pollutants. PhD thesis, Institute of Technology Carlow, IrelandGoogle Scholar
  35. Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van Der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118PubMedCrossRefGoogle Scholar
  36. Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310PubMedCrossRefGoogle Scholar
  37. Ghosh PK, Sen SK, Maiti TK (2015) Production and metabolism of IAA by Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocatal Agric Biotechnol 3:296–303Google Scholar
  38. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  39. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. doi: 10.6064/2012/963401 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Glick BR, TodorovicB CJ, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  41. Grover WH, Bryan AK, diez-Silva M, Suresh S, Higgins JM, Manalis SR (2011) Measuring single-cell density. Proc Natl Acad Sci U S A 108:10992–10996PubMedPubMedCentralCrossRefGoogle Scholar
  42. Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330CrossRefGoogle Scholar
  43. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  44. Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, In-Jung L (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125CrossRefGoogle Scholar
  45. Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterisation of root nodule bacteria associated with Acacia salicina and Acacia stenophylla (Mimosaceae) across south eastern Australia. Int J Syst Evol Microbiol 61:299–309PubMedCrossRefGoogle Scholar
  47. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberge E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ibanez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut nodules by opportunistic gamma proteobacteria. Syst Appl Microbiol 32:49–55PubMedCrossRefGoogle Scholar
  49. Imsande J (1998) Nitrogen de fi cit during soybean pod fill and increased plant biomass by vigorous N2 fixation. Eur J Agron 8:1–11CrossRefGoogle Scholar
  50. Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265CrossRefGoogle Scholar
  51. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  52. Jasim B, Joseph AA, Jimtha John C, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204PubMedCrossRefGoogle Scholar
  53. Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164PubMedCrossRefGoogle Scholar
  54. Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell 26:1481–1490CrossRefGoogle Scholar
  55. Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch Microbiol 188:103–115PubMedCrossRefGoogle Scholar
  56. Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis/CRC, Boca Raton, FL, pp 207–220CrossRefGoogle Scholar
  57. Khalifa AYZ, Alsyeeh A, Almalki MA, Saleh FA (2016) Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci 23:79–86PubMedCrossRefGoogle Scholar
  58. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3. doi: 10.1186/1471-2180-12-3 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Sang-Mo K, Yoon-Ha K, Byung-Wook Y, Al-Rawahi A, Al-Harrasi A, In-Jung L (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69CrossRefGoogle Scholar
  60. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pée KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943PubMedPubMedCentralGoogle Scholar
  61. Kloepper JW, Wei G, Tuzun S (1992) Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichurn orbiculare. In: Tjamos ES (ed) Biological control of plant diseases. Plenum, New York, pp 185–191CrossRefGoogle Scholar
  62. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236Google Scholar
  63. Konnova SA, Brykova OS, Sachkova OA, Egorenkova IV, Ignatov VV (2001) Protective role of the polysaccharide containing capsular components of Azospirillum brasilense. Microbiology 70:436–440CrossRefGoogle Scholar
  64. Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158CrossRefGoogle Scholar
  65. Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non-legumes in soils of Haryana, India. J Microbiol Biotech Res 3:83–92Google Scholar
  66. Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99:5383–5390PubMedCrossRefGoogle Scholar
  67. Larrainzar E, Ogara F, Morrissey JP (2005) Application of autofluorescent proteins for insitu studies in microbial ecology 59:257–277Google Scholar
  68. Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2016) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18:469–473. doi: 10.1111/mpp.12483 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lei X, Wang ET, Chen WF, Sui XH, Chen WX (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190:657–671PubMedCrossRefGoogle Scholar
  70. Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514PubMedCrossRefGoogle Scholar
  71. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  72. Li L, Nagai K, Yin F (2016) Progress in cold roll bonding of metals. Sci Technol Adv Mater 9:023001(11pp). doi: 10.1088/1468-6996/9/2/023001 Google Scholar
  73. Liu J, Wang ET, da Ren W, Chen WX (2010) Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Arch Microbiol 192:229–234PubMedCrossRefGoogle Scholar
  74. Long HH, Schmid DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species specific manner, Phytohormone manipulations do not result in common growth responses. PLoS One 3:2702–2708CrossRefGoogle Scholar
  75. Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van der Wolf JM, Van den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity in Rhizosphere bacteria. CSIRO, Melbourne, p 180Google Scholar
  76. Maheswari TU, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136Google Scholar
  77. Maougal RT, Bargaz A, Sahel C, Amenc L, Djekoun A, Plassard C, Drevon J (2014) Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate. Planta 239:901–908PubMedCrossRefGoogle Scholar
  78. Martinez-Hidalgo P, Galindo-Villardon P, Trujillo ME, Igual JM, Martýnez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4:6389PubMedPubMedCentralCrossRefGoogle Scholar
  79. Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319CrossRefGoogle Scholar
  80. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445PubMedCrossRefGoogle Scholar
  81. Mehboob F, Junca H, Schraa G, Stams AJM (2009) Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 83:739–747PubMedPubMedCentralCrossRefGoogle Scholar
  82. Miche L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19:502–511PubMedCrossRefGoogle Scholar
  83. Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense sp7 to wheat roots. J Gen Microbiol 137:2241–2246CrossRefGoogle Scholar
  84. Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija 57:98–102CrossRefGoogle Scholar
  85. Milner J, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065PubMedPubMedCentralGoogle Scholar
  86. Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Advances in elucidating beneficial interactions between plants, soil and bacteria. Adv Agron 121:381–445CrossRefGoogle Scholar
  87. Moghaddam MJM, Emtiazi G, Salehi Z (2012) Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agric Sci Technol 14:985–994Google Scholar
  88. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  89. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400PubMedCrossRefGoogle Scholar
  90. Muthukumar A, Bhaskaran R, Kumar SK (2010) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopest 3(105):109Google Scholar
  91. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296PubMedCrossRefGoogle Scholar
  92. Naveed M (2013) Maize endophytes–diversity, functionality and application potential. Ph.D. thesis, AIT–Austrian Institute of Technology/BOKU University, ViennaGoogle Scholar
  93. Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014a) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262CrossRefGoogle Scholar
  94. Naveed M, Mitter B, Reichenauer TG, Krzysztof W, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  95. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014c) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  96. Navrot N, Rouhier N, Gelhaye E, Jacquot J (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plantarum 129:185–195CrossRefGoogle Scholar
  97. Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC, London, pp 1–14Google Scholar
  98. Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174PubMedPubMedCentralGoogle Scholar
  99. Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:182–186CrossRefGoogle Scholar
  100. Orlandelli RC, Vasconcelos AFD, Azevedo JL, Silva MLC, Pamphile JA (2016) Screening of endophytic sources of exopolysaccharides: preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochimie Open 2:33–40CrossRefGoogle Scholar
  101. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilising endophytic Pseudomonas isolates. Front Microbiol 6:745PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pablo A, Parisi G, Lattanzi FA, Grimoldi AA, Omacini M (2015) Multi-symbiotic systems: functional implications of the coexistence of grass–endophyte and legume–rhizobia symbioses. Oikos 124:553–560CrossRefGoogle Scholar
  103. Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46:807–816CrossRefGoogle Scholar
  104. Pandya M, Kumar GN, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett 348:58–65PubMedCrossRefGoogle Scholar
  105. Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642PubMedCrossRefGoogle Scholar
  106. Peterson CA, Emanuel ME, Humphreys GB (1981) Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can J Bot 59:618–625CrossRefGoogle Scholar
  107. Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Amsterdam, pp 195–230CrossRefGoogle Scholar
  108. Prasad MP, Dagar S (2014) Identification and characterization of endophytic bacteria from fruits like Avacado and Black grapes. Int J Curr Microbiol Appl Sci 3:937–947Google Scholar
  109. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547PubMedCrossRefGoogle Scholar
  110. Rashid A (1996) Secondary and micronutrients. In: Saghir E, Bantel R (eds) Soil science, pp 341–379Google Scholar
  111. Rivas R, Garcıa-Fraile P, Velazquez E (2009) Taxonomy of bacteria nodulating legumes. Microbiol Insights 2:51–69Google Scholar
  112. Rivera-Cruz MC, Trujillo-Narcía A, Córdova-Ballona G, Kohler J, Caravaca F, Roldán A (2008) Poultry manure and banana wastes are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095CrossRefGoogle Scholar
  113. Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A (2008) Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules. Lipid Insights 2:27–40PubMedPubMedCentralGoogle Scholar
  114. Rodriguez GLJ, Valle R, Duran A, Roncero C (2005) Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579:6186–6190CrossRefGoogle Scholar
  115. Rodríguez JP, Beard TD, Bennett EM, Cumming GS, Cork S, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time and ecosystem services. Ecol Soc 11:28. http://www.ecologyandsociety.org/vol11/iss1/art28/ CrossRefGoogle Scholar
  116. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Ann Rev Plant Biol 59:143–166CrossRefGoogle Scholar
  117. Saini R, Kumar V, Dudeja SS, Pathak DV (2015) Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. Int J Curr Microbiol Appl Sci 4:207–221Google Scholar
  118. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  119. Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307PubMedCrossRefGoogle Scholar
  120. Schank SC, Smith RL, Weiser GC, Zuberere DA, Bouton JH, Quesenberry KH, Tyler ME, Milam JR, Littell RC (1979) Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol Biochem 11:287–295CrossRefGoogle Scholar
  121. Shahzad R, Waqas R, Khan AL, Asaf S, Khan MA, Sang-Mo K, Byung-Wook Y, In-Jung L (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243PubMedCrossRefGoogle Scholar
  122. Shahzad R, Khan AL, Bilal S, Waqas M, Sang-Mo K, In-Jung L (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77. doi: 10.1016/j.envexpbot.2017.01.010 CrossRefGoogle Scholar
  123. Sharma A, Johri BN (2003) Growth promoting influence of siderophore producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248PubMedCrossRefGoogle Scholar
  124. Shi Y, Lou K, Li C (2010) Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Res 105:5–13CrossRefGoogle Scholar
  125. Silva JM, dos Santos TMC, de Albuquerque LS, Montaldo YC, de Oliveira JUL, da Silva SGM, Nascimento MS, Teixeira Rd RO (2015) Potential of the endophytic bacteria (Herbaspirillum spp. and Bacillus spp.) to promote sugarcane growth. Aust J Crop Sci 9:754–760Google Scholar
  126. Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microbial Ecol 61:729–739CrossRefGoogle Scholar
  127. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438PubMedPubMedCentralCrossRefGoogle Scholar
  128. Stajković O, Meyer SD, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.) Bot Serb 33:107–114Google Scholar
  129. Stephen J, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137Google Scholar
  130. Sturz AV, Christie BR (1995) Endophytic bacterial systems governing red clover growth and development. Ann Appl Biol 126:285–290CrossRefGoogle Scholar
  131. Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332CrossRefGoogle Scholar
  132. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds), Microbial inoculants in sustainable agricultural productivity, vol 1, Springer, New Delhi, pp 117-143Google Scholar
  133. Tanaka F, Ando A, Nakamura T, Takagi H, Shima J (2006) Functional genomic analysis of commercial baker’s yeast during initial stages of model dough-fermentation. Food Microbiol 23:717–728PubMedCrossRefGoogle Scholar
  134. Tao G, Tian S, Cai M, Xie G (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523CrossRefGoogle Scholar
  135. Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  136. Tombolini R, Jansson JK (1998) Monitoring of GFP-tagged bacterial cells. In: La Rossa RA (ed) Methods in molecular biology: bioluminescence methods and protocols. Humana Press, Totowa, pp 285–298CrossRefGoogle Scholar
  137. Tombolini R, Unge A, Davey ME, de Bruijn FJ, Jansson JK (1997) Flow cytometric and microscopic analysis of GFP tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol 22:17–28CrossRefGoogle Scholar
  138. Trujillo ME, Alonso-Vega P, Rodriguez R, Carro L, Cerda E, Alonso P, Martinez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281PubMedCrossRefGoogle Scholar
  139. Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact 8:241–251CrossRefGoogle Scholar
  140. Verma JP, Yadav J, Yiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983CrossRefGoogle Scholar
  141. Villacieros M, Power B, Sánchez-Contreras M, Lloret J, Oruezabal RI, Martín M, Fernández-Piñas F, Bonilla I, Whelan C, Dowling DN, Rivilla R (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54CrossRefGoogle Scholar
  142. Wagh J, Chanchal K, Sonal S, Praveena B, Archana G, Kumar GN (2016) Inoculation of genetically modified endophytic Herbaspirillum seropedicae Z67 endowed with gluconic and 2-ketogluconic acid secretion, confers beneficial effects on rice (Oriza sativa) plants. Plant Soil 409:51–64CrossRefGoogle Scholar
  143. Wahid A, Rasul E (2005) Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M (ed) Handbook of photosynthesis, 3rd edn. CRC, Boca Raton, FL, pp 479–497Google Scholar
  144. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43CrossRefGoogle Scholar
  145. Weir BS (2011) The current taxonomy of rhizobia New Zealand rhizobia. http://www.rhizobia.co.nz/taxonomy/rhizobia.html
  146. White JF, Monica S (2010) Torres is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446PubMedCrossRefGoogle Scholar
  147. Xi C, Lambrecht M, Vanderleyden J, Michiels J (1999) Bi-functional gfp-and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J Microbiol Methods 35:85–92PubMedCrossRefGoogle Scholar
  148. Xie X, Li Y, Liu Z, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749PubMedCrossRefGoogle Scholar
  149. Xu L, Zhang Y, Wang L, Chen W, Wei G (2014) Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Syst Appl Microbiol 37:457–465PubMedCrossRefGoogle Scholar
  150. You CB, Lin M, Fang XJ, Song W (1995) Attachment of Alcaligenes to rice roots. Soil Biol Biochem 27:463–466CrossRefGoogle Scholar
  151. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Arshad M (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat under salt-stressed conditions. Arch Microbiol 191:415–424PubMedCrossRefGoogle Scholar
  152. Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel JC, Gillis M, Dreyfus B, de Lajudie P (2006) Characterization of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395CrossRefGoogle Scholar
  153. Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11:1–21CrossRefGoogle Scholar
  154. Zhang XX, George A, Bailey MJ, Rainey PB (2006) The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings. Microbiology 152:1867–1875PubMedCrossRefGoogle Scholar
  155. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62PubMedCrossRefGoogle Scholar
  156. Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.) J Pineal Res 57:269–279PubMedCrossRefGoogle Scholar
  157. Zhao LF, YJ X, Ma ZQ, Deng ZS, Shan CJ, Wei GH (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44:629–637CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Muhammad Naveed
    • 1
    Email author
  • Muhammad Zahir Aziz
    • 1
  • Muhammad Yaseen
    • 1
  1. 1.Institute of Soil and Environmental SciencesUniversity of AgricultureFaisalabadPakistan

Personalised recommendations