Advertisement

Inoculation Effects of Associative Plant Growth-Promoting Rhizobacteria on the Performance of Legumes

  • Mohd. Saghir KhanEmail author
  • Almas Zaidi
  • Asfa Rizvi
  • Saima Saif
Chapter

Abstract

Constantly increasing human population requires that the crop production including those of legumes be enhanced rapidly to fulfill the food demands across the globe. In order to optimize pulse production, growers generally apply agrochemicals including fertilizers and pesticides. However, the excessive and uncontrolled use of such chemicals has resulted in reduced crop production besides their adverse impact on environment. In order to protect losses in soil fertility and to preserve environmental quality, the use of inexpensive and eco-friendly microbial preparations (biofertilizers) has been exploited in farming practices with remarkable success. Among various plant growth-promoting rhizobacteria (PGPR), the associative nitrogen-fixing PGPR, belonging to the genus Azospirillum, has long been employed as microbial inoculant worldwide to promote legume production. Azospirillum, when used as inoculant, increase the production of root hairs and root growth which in effect benefit plants with better absorption of water and nutrients. The inoculation of Azospirillum either alone or in combination with other beneficial PGPR has been found to increase N2 fixation and concomitantly the grain yield of legumes. Considering the importance of Azospirillum, this chapter highlights the role of Azospirillum in the production of legumes in different agronomic setup.

Keywords

Associative bacteria Azospirillum Arbuscular mycorrhiza Bioactive molecules Legumes Plant growth-promoting rhizobacteria 

References

  1. Abd El-Azeem SA, Mehana TA, Shabayek AA (2007) Response of Faba bean (Vicia faba L.) to inoculation with plant growth-promoting rhizobacteria. CATRINA J 2:67–75Google Scholar
  2. Alen’kina SA, Bogatyrev VA, Matora LY, Sokolova MK, Chernyshova MP, Trutneva KA, Nikitina VE (2014) Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial–plant root interactions. Plant Soil 381:337–349CrossRefGoogle Scholar
  3. Aliasgharzad N, Heydaryan Z, Sarikhani MR (2014) Azospirillum inoculation alters nitrate reductase activity and nitrogen uptake in wheat plant under water deficit conditions. Int J Sci Engg Tech 4(4):94–98Google Scholar
  4. Amora-Lazcano E, Vazquez MM, Azcon R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils 27:65–70CrossRefGoogle Scholar
  5. Andre SA, Le GN, Roux C, Prin Y, Neyra M, Duponnois R (2005) Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth. Mycorrhiza 15:357–364PubMedCrossRefGoogle Scholar
  6. Andreeva I, Redkina T, Izmailov S (1993) The involvement of indole-acetic acid in the stimulation of Rhizobium-legume symbiosis by Azospirillum brasilense. Russ J Plant Physiol 40:780–780Google Scholar
  7. Ardakani MR, Maleki S, Aghayri F, Rejali F, Faregh AH (2014) Tripartite symbiosis of lentil (Lens culinaris L.), Mycorrhiza and Azospirillum brasilense under rainfed condition. In: Rahmann G, Aksoy U (eds) Building organic bridges, Thuenen report, no. 20, vol 3. Johann Heinrich von Thünen-Institut, Braunschweig, pp 691–694Google Scholar
  8. Arshad M, Frankenberger JR (1997) Plant growth-regulating substances in the rhizosphere: microbial production and functions. In: Donald LS (ed) Advances in agronomy. Academic, San Diego, pp 45–151Google Scholar
  9. Aung TT, Tittabutr P, Boonkerd N, Herridge D, Teaumroong N (2013) Co-inoculation effects of Bradyrhizobium japonicum and Azospirillum sp. on competitive nodulation and rhizosphere eubacterial community structures of soybean under rhizobia-established soil conditions. Afr J Biotechnol 12:2850–2862Google Scholar
  10. Baca BE, Soto-Urzua L, Xochihua-Corona YG, Cuervo-Garcia A (1994) Characterization of two aromatic amino acid aminotransferases and production of indoleacetic acid in Azospirillum strains. Soil Biol Biochem 26:57–63CrossRefGoogle Scholar
  11. Bárbaro IM, Brancalião SR, Ticelli M, Miguel FB, Silva JAA (2008) Técnica alternativa: co-inoculação de soja com Azospirillum e Bradyrhizobium visando incremento de produtividade. Artigo em Hypertexto. Disponível em: http://www.infobibos.com/Artigos/2008_4/coinoculacao/index.htm. Acessado em: 04 de janeiro de 2012
  12. Bashan Y, Bashan LE (2005) Bacteria/plant growth-promoting. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 103–115CrossRefGoogle Scholar
  13. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50:521–577Google Scholar
  14. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608CrossRefGoogle Scholar
  15. Bashan Y, Levanony H, Whitmoyer RE (1991) Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J Gen Microbiol 137:187–196CrossRefGoogle Scholar
  16. Bashan Y, Puente ME, Rodriquez-Mendoza MN, Toledo G, Holguin G, Ferrea-Cerrats R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Environ Microbiol 61:1938–1945Google Scholar
  17. Beijerinck MW (1925) über ein Spirillum, welches frein sticksto ff binden kann? Zentralbl Bakeriol Parasitenkd Infectionskr Abt 63:353–359Google Scholar
  18. Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.) Soil Biol Biochem 29:923–929CrossRefGoogle Scholar
  19. Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E, Okon Y (1998) Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer Academic, Dordrecht, pp 609–612CrossRefGoogle Scholar
  20. Cacciari I, Lippi D, Pietrosanti T, Pietrosanti W (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115:151–153CrossRefGoogle Scholar
  21. Carvalho TLG, Balsemão-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot 65(19):5631–5642PubMedCrossRefGoogle Scholar
  22. Cassan F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459CrossRefGoogle Scholar
  23. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009a) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109 inoculated singly or in combination promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.) Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  24. Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009b) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19CrossRefGoogle Scholar
  25. Cassan F, Sgroy V, Perrig D, Masciarelli O, Luna V (2008) Phytohormone production by Azospirillum spp. physiological and technological aspects of plant growth promotion. In: Azospirillum spp. cell physiol plant interactions and Agronomic Research in Argentina, pp 61–86Google Scholar
  26. Cecagno R, Fritsch TE, Schrank IS (2015) The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. BioMed Res Int 2015:898592. doi: 10.1155/2015/898592 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chibeba AM, Guimarães MF, Brito OR, Nogueira MA, Araujo RS, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649CrossRefGoogle Scholar
  28. Crozier A, Arruda P, Jasmim JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54(5):2833–2837PubMedPubMedCentralGoogle Scholar
  29. Dahm H, Rózycki H, Strzelczyk E, Li CY (1993) Production of B-group vitamins by Azospirillum spp. grown in media of different pH at different temperatures. Zentralbl Mikrobiol 148:195–203PubMedGoogle Scholar
  30. Del Gallo M, Idaegi A (1990) Characterization and quantification of exocellular polysaccharide in Azospirillum brasilense and Azospirillum lipoferum. Symbiosis 9:155–161Google Scholar
  31. Dobereiner J, Day JM (1976) Association symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the first international symposium on nitrogen fixation, 2, Washington State University Press, Pullman, pp 518–538Google Scholar
  32. Dubrovsky JG, Puente ME, Bashan Y (1994) Arabidopsis thaliana as a model system for the study of the effect of inoculation by Azospirillum brasilense Sp 245 on root hair growth. Soil Biol Biochem 26:1657–1664CrossRefGoogle Scholar
  33. El-Hamshary OIM, El-Gebally OG, Abou-El-Khier ZA, Arafa RA, Mousa Sh A (2010) Enhancement of the chitinolytic properties of Azospirillum strain against plant pathogens via transformation. J Am Sci 6(9):169–176Google Scholar
  34. Fages J, Arsac JF (1981) Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacterial. Plant Soil 137:87–90CrossRefGoogle Scholar
  35. Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 77–85Google Scholar
  36. Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338:241–254PubMedCrossRefGoogle Scholar
  37. Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108PubMedCrossRefGoogle Scholar
  38. Galal YGM (1997) Dual inoculation with strains of Bradyrhizobium japonicum and Azospirillum brasilense to improve growth and biological nitrogen fixation of soybean (Glycine max L.) Biol Fertil Soils 24:317–322CrossRefGoogle Scholar
  39. Gitti DC, Arf O, Kaneko FH, Rodrigues RAF, Buzetti S, Portugal JR, Corsini DCDC (2012) Inoculation of Azospirillum brasilense cultivars of beans types in winter crop. Rev Agrarian 5:36–46Google Scholar
  40. Givaudan A, Effosse A, Bally R (1991) Melanin production by Azospirillum lipoferum strains. In: Polsinelli M, Materassi R, Vincenzini M (eds) Nitrogen fixation: proceedings of the fifth international symposium on nitrogen fixation with non-legumes, Florence, 10–14 Sep 1990, pp 311–312
  41. Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Ecol 108:205–210CrossRefGoogle Scholar
  42. Hadas R, Okon Y (1987) Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biol Fertil Soils 5:241–247CrossRefGoogle Scholar
  43. Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okn Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie, EDP. Sciences 21(6–7):553–560Google Scholar
  44. Holguin G, Bashan Y (1996) Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.) Soil Biol Biochem 28:1651–1660CrossRefGoogle Scholar
  45. Hossain MM, Jahan I, Akter S, Rahman MN, Rahman SMB (2015) Effects of Azospirillum isolates from paddy fields on the growth of rice plants. Res Australas Biotechnol 6:15–22Google Scholar
  46. Hou X, McMillan M, Coumans JVF, Poljak A, Raftery MJ (2014) Cellular responses during morphological transformation in Azospirillum brasilense and its flcA knockout mutant. PLoS One 9(12):e114435PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  48. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  49. Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817CrossRefGoogle Scholar
  50. Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3 J Agric Res Dev 5:0108–0119Google Scholar
  51. Jhala YK, Shelat HN, Panpatte DG (2016) Efficacy testing of Acetobacter and Azospirillum isolates on maize cv. GM-3. J Fertil Pestic 7:164Google Scholar
  52. Joe M, Karthikeyan MB, Sekar C, Deiveekasundaram M (2010) Optimization of biofloc production in Azospirillum brasilense (MTCC-125) and evaluation of its adherence with the roots of certain crops. Indian J Microbiol 50(Suppl 1):S21–S25CrossRefGoogle Scholar
  53. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  54. Kanchanashri B, Gundappagol RC, Annu T, Mahadevaswamy, Santhosh GP (2014) Isolation and characterization of Azospirillum strains from rainfed areas of Raichur district of northern Karnataka, India. Bioinfolet 11(2a):295–299Google Scholar
  55. Karunya SK, Reetha D (2014) Screening of plant growth promoting rhizobacteria for ACC deaminase activity. Int J Curr Res Chem Pharma Sci 1(3):65–70Google Scholar
  56. Krishnan A, Sharavanan PS (2016) Effects of Glomus Mosseae and Azospirillum on the growth behavior of black gram Vigna Mungo (L.) Hepper. Ind J Res 5:454–457Google Scholar
  57. Krishnaraj PU, Dahale S (2014) Mineral phosphate solubilization: concepts and prospects in sustainable agriculture. Proc Ind Natl Sci Acad 80:389–405CrossRefGoogle Scholar
  58. Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:2. doi: 10.4172/2471-2728.1000155 CrossRefGoogle Scholar
  59. Lambrecht M, Okon Y, Vande Brook A, Vandereyden J (2000) Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300PubMedCrossRefGoogle Scholar
  60. Lenin G, Jayanthi M (2012) Indole acetic acid, gibberellic acid and siderophore production by PGPR isolates from rhizospheric soils of Catharanthus roseus. Int J Pharm Biol Arch 3(4):933–938Google Scholar
  61. Li CY, Catellano MA (1987) Azospirillum isolated from within sporocarp of the mycorrhizal fungi Hebeloma crustuliniforme, Laccaria laccata and Rhizopogon vinicolor. Trans Br Mycol Soc 88:563–566CrossRefGoogle Scholar
  62. Li H, Cui Y, Wu L, Tu R, Chen S (2011) cDNA-AFLP analysis of differential gene expression related to cell chemotactic and encystment of Azospirillum brasilense. Microbiol Res 166:595–605PubMedCrossRefGoogle Scholar
  63. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:21PubMedPubMedCentralCrossRefGoogle Scholar
  64. Masciarelli O, Urbani L, Reinoso H, Luna V (2013) Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J Microbiol 51(5):590–597PubMedCrossRefGoogle Scholar
  65. Massoud ON, Morsy EM, El-Batanony NH (2009) Field response of snap bean (Phaseolus vulgaris L.) to N2-fixers Bacillus circulans and arbuscular mycorrhizal fungi inoculation through accelerating rock phosphate and feldspar weathering. Aust J Basic Appl Sci 3:844–852Google Scholar
  66. Mehmet Ö, Cevdet A, Oral D, Mehmet AS (2005) Single and double inoculation with Azospirillum/Trichoderma: the effects on dry bean and wheat. Biol Fertil Soils 41:262–272CrossRefGoogle Scholar
  67. Mehnaz S, Weselowski B, Lazarovits G (2007) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624PubMedCrossRefGoogle Scholar
  68. Meza B, de-Bashan LE, Bashan Y (2015) Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol 166:72–83PubMedCrossRefGoogle Scholar
  69. Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463CrossRefGoogle Scholar
  70. Moghaddam MJM, Emtiazi G, Salehi Z (2012) Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agric Sci Technol 14:985–994Google Scholar
  71. Naz S, Cretenet M, Vernoux JP (2013) Current knowledge on antimicrobial metabolites produced from aromatic amino acid metabolism in fermented products. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Centre, Badajoz, pp 337–346Google Scholar
  72. Neyra CA, Atkinson A, Obubayi O (1995) Coaggregation of Azospirillum with other bacteria: basis for functional diversity. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganism, genetics—physiology—pecology, NATO ASI series, Series G. Springer, Berlin, pp 429–439CrossRefGoogle Scholar
  73. Noumavo PA, Agbodjato NA, Gachomo EW, Salami HA, Baba-Moussa F, Adjanohoun A, Kotchoni SO, Baba-Moussa L (2015) Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. Afr J Biotechnol 14(9):811–819CrossRefGoogle Scholar
  74. Okon Y, Itzigsohn R (1992) Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol Lett 103:131–139Google Scholar
  75. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370Google Scholar
  76. Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132PubMedCrossRefGoogle Scholar
  77. Pattern CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefGoogle Scholar
  78. Pedraza R, Motok J, Tortora M, Salazar S, Díaz-Ricci J (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178CrossRefGoogle Scholar
  79. Pedraza RO (2015) Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In: Cassan FD et al (eds) Handbook for azospirillum. Springer, Cham, pp 251–262Google Scholar
  80. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271PubMedCrossRefGoogle Scholar
  81. Pereg L, de-Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414CrossRefGoogle Scholar
  82. Peres AR, Rodrigues RAF, Arf O, Portugal JR, Corsini DCDC (2016) Co-inoculation of Rhizobium tropici and Azospirillum brasilense in common beans grown under two irrigation depths. Rev Ceres 63(2):198–207CrossRefGoogle Scholar
  83. Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336PubMedCrossRefGoogle Scholar
  84. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150PubMedCrossRefGoogle Scholar
  85. Radif HM, Hassan SS (2014) Detection of hydrolytic enzymes produced by Azospirillum brasiliense isolated from root soil. World J Exp Biosci 2(2):36–40Google Scholar
  86. Raja SB, Muthuselvam K (2014) Interstrain differences of Chilli Azospirillum isolates on their plant growth promoting traits under in vitro conditions. Int J Adv Res Biol Sci 1:248–253Google Scholar
  87. Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10(15):486–504CrossRefGoogle Scholar
  88. Rasool L, Asghar M, Jamil A, Rehman SU (2015) Identification of Azospirillum species from wheat rhizosphere. J Anim Plant Sci 25(4):1081–1086Google Scholar
  89. Ribaudo CM, Krumpholz EM, Cassán FD, Bottini R, Cantore ML, Curá JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25:175–185CrossRefGoogle Scholar
  90. Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmerón V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.) Biol Fertil Soils 29:165–169CrossRefGoogle Scholar
  91. Rodelas B, Salmeron V, Martinez-Toledo MV, Gonzalez-Lopez J (1993) Production of vitamins by Azospirillum brasilense in chemically—defined media. Plant Soil 153:97–101CrossRefGoogle Scholar
  92. Rodrigues AC, Bonifacio A, Fernando de Araujo F, Lira Junior MA, Figueiredo MVB (2015) Azospirillum sp. as a challenge for agriculture. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem, sustainable development and biodiversity, vol 12. Springer, New York. doi: 10.1007/978-3-319-24654-3_2 Google Scholar
  93. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555PubMedCrossRefGoogle Scholar
  94. Rokhzadi A, Toashih V (2011) Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth promoting rhizobacteria. AJCS 5(1):44–48Google Scholar
  95. Russel S, Muszyski S (1995) Reduction of 4-choloronitrobenzene by Azospirillum lipoferum. In: NATO ASI Series G 37, pp 369–375Google Scholar
  96. Saikia SP, Bora D, Goswami A, Mudoi KD, Gogoi A (2012) A review on the role of Azospirillum in the yield improvement of non leguminous crops. Afr J Microbiol Res 6(6):1085–1102CrossRefGoogle Scholar
  97. Sakthivel U, Karthikeyan B (2012) Isolation and characterization of plant growth promoting rhizobacteria (pgpr) from the rhizosphere of Coleus forskohlii grown soil. Int J Recent Sci Res 3(5):288–296Google Scholar
  98. Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation growth of several winter legumes. Plant Soil 90:335–342CrossRefGoogle Scholar
  99. Sarig S, Blum A, Okon Y (1988) Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci 110:271–277CrossRefGoogle Scholar
  100. Servani M, Mobasser HR, Ganjali HR (2014) Effect of bacterium Azospirillum phosphate fertil 2 on soybean. Int J Farm Alli Sci 3(3):324–327Google Scholar
  101. Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810PubMedPubMedCentralCrossRefGoogle Scholar
  102. Spaepen S, Vanderleyen J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  103. Steenhoudt O, Vanderleyden J (2000) Azospirillum a free living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506PubMedCrossRefGoogle Scholar
  104. Stezelczyk E, Kampert M, Li CY (1994) Cytokinin like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60CrossRefGoogle Scholar
  105. Tahir M, Mirza MS, Zaheer A, Dimitrov MR, Smidt H, Hameed S (2013) Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.) Aust J Crop Sci 7:1284–1292Google Scholar
  106. Tapia-Hernandez A, Mascarua-Esparza MA, Caballero Mellado J (1990) Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios 64:73–83PubMedGoogle Scholar
  107. Tarrand JJ, Kreig NR, Döbereiner J (1978) A taxonomic study of the Azospirillum lipoferum group, with a descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerink) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980PubMedCrossRefGoogle Scholar
  108. Tchebotar VK, Kang UG, Asis CA, Akao S (1998) The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover. Biol Fertil Soils 27:349–352CrossRefGoogle Scholar
  109. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl Environ Microbiol 37:1016–1024PubMedPubMedCentralGoogle Scholar
  110. Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313PubMedCrossRefGoogle Scholar
  111. Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol (Stuttg) 14:605–611CrossRefGoogle Scholar
  112. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci. doi: 10.3389/fpls.2013.00356
  113. Verma JP, Yadav J, Tiwari KN, Lavakush, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983CrossRefGoogle Scholar
  114. Vicario JC, Primo ED, Dardanelli MS, Giordano W (2016) Promotion of peanut growth by co-inoculation with selected strains of Bradyrhizobium and Azospirillum. J Plant Growth Regul 35:413–419CrossRefGoogle Scholar
  115. Volpin H, Kapulnik Y (1994) Interaction of Azospirillum with beneficial soil microorganisms. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118Google Scholar
  116. Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189(2):494–506PubMedCrossRefGoogle Scholar
  117. Xie CH, Yokota A (2005) Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438PubMedCrossRefGoogle Scholar
  118. Yahalom E, Dovrat A, Okon Y, Czosnek H (1991) Effect of inoculation with Azospirillum brasilense strain Cd and rhizobium on the root morphology of burr medic (Medicago polymorpha L.) Isr J Bot 40:155–164Google Scholar
  119. Yahalom E, Kapulnik Y, Okon Y (1984) Response of Setaria italica to inoculation with Azospirillum brasilense as compared to Azotobacter chroococcum. Plant Soil 82:77–85CrossRefGoogle Scholar
  120. Zaady E, Perevolotsky A, Okon Y (1993) Promotion of plant growth by inoculum with aggregated and single cell suspension of Azospirillum brasilense Cd. Soil Biol Biochem 25:819–823CrossRefGoogle Scholar
  121. Zuffo AM, Rezende PM, Bruzi AT, Oliveira NT, Soares IO, Neto GFG, Cardillo BES, Silva LO (2015) Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in the soybean crop coinoculação de Bradyrhizobium japonicum e Azospirillum brasilense na cultura da soja. Revista de Ciências Agrárias 38:87–93Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohd. Saghir Khan
    • 1
    Email author
  • Almas Zaidi
    • 1
  • Asfa Rizvi
    • 1
  • Saima Saif
    • 1
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations