Advertisement

Current Status of the Taxonomy of Bacteria Able to Establish Nitrogen-Fixing Legume Symbiosis

  • Encarna VelázquezEmail author
  • Paula García-Fraile
  • Martha-Helena Ramírez-Bahena
  • Raúl Rivas
  • Eustoquio Martínez-Molina
Chapter

Abstract

Bacteria forming nitrogen-fixing symbiosis with legumes, classically named rhizobia, currently include more than 100 species distributed in the old genera Allorhizobium, Azorhizobium, Bradyrhizobium, Ensifer (formerly Sinorhizobium), Mesorhizobium and Rhizobium and in the new genera Neorhizobium and Pararhizobium. In addition, several new rhizobia have been described in the twenty-first century belonging, as the classical rhizobia, to the alpha Proteobacteria genera Aminobacter, Devosia, Methylobacterium, Microvirga, Ochrobactrum, Phyllobacterium and Shinella and to the beta Proteobacteria Burkholderia, Paraburkholderia (formerly Burkholderia) and Cupriavidus. These species carry symbiotic genes encoding for nodulation and nitrogen fixation which are located on plasmids or symbiotic islands. These genes determine the host range and confer rhizobia the ability to fix nitrogen in the legume nodules. Depending on the harboured nodulation genes, several symbiovars have recently been described in the classical rhizobia genera. In this chapter, we review the different groups of bacteria able of forming symbiosis with legumes and their classification based on core genes (genera and species) as well as on auxiliary ones (symbiovars).

Keywords

Legumes Cross-inoculation Symbiosis Symbiotic genes Symbiovars 

Notes

Acknowledgements

The authors would like to thank our numerous collaborators and students involved in this research over the years. Funding was provided by Ministerio de Economía, Industria y Competitividad (MINECO) and Junta de Castilla y León.

References

  1. Aguilar OM, Grasso DH, Riccillo PM, López MV, Szafer E (1998) Rapid identification of bean Rhizobium isolates by a nifH gene-pcr assay. Soil Biol Biochem 30:1655–1661CrossRefGoogle Scholar
  2. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Medigue C, Masson-Boivin C (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006PubMedCrossRefGoogle Scholar
  4. Ampomah OY, Huss-Danell K (2011) Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 34:267–275PubMedCrossRefGoogle Scholar
  5. An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448PubMedCrossRefGoogle Scholar
  6. Andam CP, Mondo SJ, Parker MA (2007) Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl Environ Microbiol 73:4686–4690PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andrus AD, Andam C, Parker MA (2012) American origin of Cupriavidus bacteria associated with invasive Mimosa legumes in the Philippines. FEMS Microbiol Ecol 80:747–750PubMedCrossRefGoogle Scholar
  8. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O'Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588PubMedCrossRefGoogle Scholar
  9. Armas-Capote N, Pérez-Yépez J, Martínez-Hidalgo P, Garzón-Machado V, Del Arco-Aguilar M, Velázquez E, León-Barrios M (2014) Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst Appl Microbiol 37:140–148PubMedCrossRefGoogle Scholar
  10. Bakhoum N, Galiana A, Le Roux C, Kane A, Duponnois R, Ndoye F, Fall D, Noba K, Sylla SN, Diouf D (2015) Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) mesorhizobium strains from different regions of Senegal. Microb Ecol 69:641–651PubMedCrossRefGoogle Scholar
  11. Baldwin IL, Fred EB (1929) Nomenclature of the root nodule bacteria of the Leguminosae. J Bacteriol 17:141–150PubMedPubMedCentralGoogle Scholar
  12. Baraúna AC, Rouws LF, Simoes-Araujo JL, Dos Reis Junior FB, Iannetta PP, Maluk M, Goi SR, Reis VM, James EK, Zilli JE (2016) Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. Int J Syst Evol Microbiol 66:4118–4124PubMedCrossRefGoogle Scholar
  13. Barrett CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65PubMedCrossRefGoogle Scholar
  14. Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206PubMedPubMedCentralCrossRefGoogle Scholar
  15. Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A (2016) Characterisation of the N2O producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001036
  16. Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg 46:740–750Google Scholar
  17. Bejarano A, Ramírez-Bahena MH, Velázquez E, Peix A (2014) Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 37:533–540PubMedCrossRefGoogle Scholar
  18. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372PubMedCrossRefGoogle Scholar
  19. van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136PubMedPubMedCentralCrossRefGoogle Scholar
  20. van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD (1998) Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22PubMedCrossRefGoogle Scholar
  21. van Berkum P, Leibold JM, Eardly BD (2006) Proposal for combining Bradyrhizobium spp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch and Muller, 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (comb. nov.) Syst Appl Microbiol 29:207–215PubMedCrossRefGoogle Scholar
  22. Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR (2012) Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 62:1997–2003PubMedCrossRefGoogle Scholar
  23. Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C, Grether R, Camargo-Ricalde SL, Chen W, Sprent JI, Martínez-Romero E, Young JP, James EK (2016) Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. New Phytol 209:319–333PubMedCrossRefGoogle Scholar
  24. Boonsnongcheep P, Prathanturarug S, Takahashi Y, Matsumoto A (2015) Rhizobium puerariae sp. nov., an endophytic bacterium from the root nodules of medicinal plant Pueraria candollei var. candollei. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.000863
  25. Bournaud C, Moulin L, Cnockaert M, de Faria SM, Prin Y, Severac D, Vandamme P (2016) Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001648
  26. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633PubMedCrossRefGoogle Scholar
  27. Buchanan RE (1926) What names should be used for the organisms producing nodules on the roots of leguminous plants? Proc Iowa Acad Sci 33:81–90Google Scholar
  28. Casida LE (1982) Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345CrossRefGoogle Scholar
  29. Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E, Bedmar EJ (2011) Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int J Syst Evol Microbiol 61:2922–2927PubMedCrossRefGoogle Scholar
  30. Chahboune R, Carro L, Peix A, Ramírez-Bahena MH, Barrijal S, Velázquez E, Bedmar EJ (2012) Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 35:302–305PubMedCrossRefGoogle Scholar
  31. Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX (2011) Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 61:2496–5202PubMedCrossRefGoogle Scholar
  32. Chen WX, Yan GH, Li JL (1988) Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  33. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov., isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280CrossRefGoogle Scholar
  34. Chen WX, Wang E, Wang S, Li Y, Chen X, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159PubMedCrossRefGoogle Scholar
  35. Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873PubMedCrossRefGoogle Scholar
  36. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  37. Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003a) Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061PubMedCrossRefGoogle Scholar
  38. Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003b) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI (2005) Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol 168:661–675PubMedCrossRefGoogle Scholar
  40. Chen WM, James EK, Coenye T, Chou JH, Barrios E, de Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851PubMedCrossRefGoogle Scholar
  41. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  42. Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JP, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179PubMedCrossRefGoogle Scholar
  43. Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2010) Mesorhizobium alhagi sp. nov., isolated from wild Alhagi sparsifolia in north-western China. Int J Syst Evol Microbiol 60:958–962PubMedCrossRefGoogle Scholar
  44. Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 61:574–579PubMedCrossRefGoogle Scholar
  45. Chen W, Sheng XF, He LY, Huang Z (2015) Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 65:412–417PubMedCrossRefGoogle Scholar
  46. Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ, Martínez-Molina E, Toro N, Velázquez E, Fernández-López M (2014) The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 37:177–185PubMedCrossRefGoogle Scholar
  47. Conn HJ (1938) Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 36:320–321Google Scholar
  48. Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360PubMedPubMedCentralGoogle Scholar
  49. Dall'Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JR, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173PubMedCrossRefGoogle Scholar
  50. Dall'Agnol RF, Ribeiro RA, Delamuta JR, Ormeño-Orrillo E, Rogel MA, Andrade DS, Martínez-Romero E, Hungria M (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64:3222–3229PubMedCrossRefGoogle Scholar
  51. Dangeard PA (1926) Recherches sur les tubercules radicaux des Légumineuses. Botaniste (Paris) 16:1–275Google Scholar
  52. De Meyer SE, Coorevits A, Willems A (2012) Tardiphaga robiniae gen. nov, sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Syst Appl Microbiol 35:205–214PubMedCrossRefGoogle Scholar
  53. De Meyer SE, Cnockaert M, Ardley JK, Maker G, Yates R, Howieson JG, Vandamme P (2013a) Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 63:3950–3957PubMedCrossRefGoogle Scholar
  54. De Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G, Howieson JG, Vandamme P (2013b) Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int J Syst Evol Microbiol 63:3944–3949PubMedCrossRefGoogle Scholar
  55. De Meyer SE, Cnockaert M, Ardley JK, Van Wyk BE, Vandamme PA, Howieson JG (2014) Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 64:1090–1095PubMedCrossRefGoogle Scholar
  56. De Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A (2015) Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 65:3419–3426PubMedCrossRefGoogle Scholar
  57. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A (2016) Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules in New Zealand. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.000796
  58. Debellé F, Sharma SB (1986) Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res 14:7453–7472PubMedPubMedCentralCrossRefGoogle Scholar
  59. Degefu T, Wolde-Meskel E, Frostegård Å (2011) Multilocus sequence analyses reveal several unnamed Mesorhizobium genospecies nodulating Acacia species and Sesbania sesban trees in Southern regions of Ethiopia. Syst Appl Microbiol 34:216–226PubMedCrossRefGoogle Scholar
  60. Degefu T, Wolde-Meskel E, Liu B, Cleenwerck I, Willems A, Frostegård Å (2013) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees. Int J Syst Evol Microbiol 63:1746–1753PubMedCrossRefGoogle Scholar
  61. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63:3342–3351Google Scholar
  62. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS, Martínez-Romero E, Hungria M (2015) Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 65:4424–4433PubMedCrossRefGoogle Scholar
  63. Delamuta JR, Ribeiro RA, Araújo JL, Rouws LF, Zilli JÉ, Parma MM, Melo IS, Hungria M (2016) Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001148
  64. Diange EA, Lee SS (2013) Rhizobium halotolerans sp. nov., isolated from chloroethylenes contaminated soil. Curr Microbiol 66:599–605PubMedCrossRefGoogle Scholar
  65. Díaz-Alcántara CA, Ramírez-Bahena MH, Mulas D, García-Fraile P, Gómez-Moriano A, Peix A, Velázquez E, González-Andrés F (2014) Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst Appl Microbiol 37:149–156PubMedCrossRefGoogle Scholar
  66. Diouf D, Fall D, Chaintreuil C, Ba AT, Dreyfus B, Neyra M, Ndoye I, Moulin L (2010) Phylogenetic analyses of symbiotic genes and characterization of functional traits of Mesorhizobium spp. strains associated with the promiscuous species Acacia seyal Del. J Appl Microbiol 108:818–830PubMedCrossRefGoogle Scholar
  67. Dobritsa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001065
  68. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  69. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J, Ruiz-Argüeso T, Martínez-Romero E, Ormeño-Orrillo E (2014a) Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 64:2072–2078PubMedCrossRefGoogle Scholar
  70. Durán D, Rey L, Navarro A, Busquets A, Imperial J, Ruiz-Argüeso T (2014b) Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 37:336–341PubMedCrossRefGoogle Scholar
  71. Eckhardt MM, Baldwin IR, Fred EB (1931) Studies on the root-nodule bacteria of Lupinus. J Bacteriol 21:273–285PubMedPubMedCentralGoogle Scholar
  72. Elliott GN, Chen WM, Bontemps C, Chou JH, Young JP, Sprent JI, James EK (2007a) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411PubMedPubMedCentralCrossRefGoogle Scholar
  73. Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007b) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180PubMedCrossRefGoogle Scholar
  74. Farrand SK, van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687PubMedCrossRefGoogle Scholar
  75. Finan TM (2002) Evolving insights: symbiosis islands and horizontal gene transfer. J Bacteriol 184:2855–2856PubMedPubMedCentralCrossRefGoogle Scholar
  76. Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Bet Dtsch Bot Ges 7:332–346Google Scholar
  77. Fuhrmann M, Hennecke H (1984) Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol 158:1005–1011PubMedPubMedCentralGoogle Scholar
  78. Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JP, Lindström K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–20012PubMedCrossRefGoogle Scholar
  79. García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848PubMedCrossRefGoogle Scholar
  80. García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E (2010) Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56:657–666PubMedCrossRefGoogle Scholar
  81. Garrity GM, Bell JA, Lilburn T (2005) Brucellaceae. Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc., New YorkGoogle Scholar
  82. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048PubMedCrossRefGoogle Scholar
  83. Gehlot HS, Tak N, Kaushik M, Mitra S, Chen WM, Poweleit N, Panwar D, Poonar N, Parihar R, Tak A, Sankhla IS, Ojha A, Rao SR, Simon MF, Reis Junior FB, Perigolo N, Tripathi AK, Sprent JI, Young JP, James EK, Gyaneshwar P (2013) An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann Bot 112:179–196PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97PubMedCrossRefGoogle Scholar
  85. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedCrossRefGoogle Scholar
  86. Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M, Łotocka B, Wójcik M (2015) Phylogeny of symbiotic genes and the symbiotic properties of rhizobia specific to Astragalus glycyphyllos L. PLoS One 23:e0141504CrossRefGoogle Scholar
  87. Goethals K, Gao M, Tomekpe K, Van Montagu M, Holsters M (1989) Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: Nucleotide sequence and plant-inducible expression. Mol Gen Genetics 219:289–298CrossRefGoogle Scholar
  88. Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412PubMedPubMedCentralCrossRefGoogle Scholar
  89. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley J, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulation bacteria. Int J Syst Bacteriol 41:582–587CrossRefGoogle Scholar
  90. Grison CM, Jackson S, Merlot S, Dobson A, Grison C (2015) Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Microbiol 65:1525–1530PubMedCrossRefGoogle Scholar
  91. Grönemeyer JL, Chimwamurombe P, Reinhold-Hurek B (2015a) Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int J Syst Evol Microbiol 65:3241–3247PubMedCrossRefGoogle Scholar
  92. Grönemeyer JL, Hurek T, Reinhold-Hurek B (2015b) Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 65:4886–4894CrossRefGoogle Scholar
  93. Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B (2016) Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 66:62–69PubMedCrossRefGoogle Scholar
  94. Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368PubMedCrossRefGoogle Scholar
  95. Gu T, Sun LN, Zhang J, Sui XH, Li SP (2014) Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 64:2017–2022PubMedCrossRefGoogle Scholar
  96. Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX (2008) Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58:2646–2653PubMedCrossRefGoogle Scholar
  97. Gubry-Rangin C, Béna G, Cleyet-Marel JC, Brunel B (2013) Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species. Syst Appl Microbiol 36:490–496PubMedCrossRefGoogle Scholar
  98. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H, Quiñones MA, El Idrissi MM, Velázquez E, Fernández-Pascual M, Bedmar EJ, Peix A (2013) Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 36:218–223PubMedCrossRefGoogle Scholar
  99. Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008a) Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58:2610–2618PubMedCrossRefGoogle Scholar
  100. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008b) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699PubMedCrossRefGoogle Scholar
  101. Helene LC, Marçon Delamuta JR, Augusto Ribeiro R, Ormeño-Orrillo E, Antonio Rogel M, Martínez-Romero E, Hungria M (2015) Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 65:4441–4448PubMedCrossRefGoogle Scholar
  102. Hirsch P, Müller M (1985) Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov., and Blastobacter denitrificans sp. nov., new budding bacteria from freshwater habitats. Syst Appl Microbiol 6:281–286CrossRefGoogle Scholar
  103. Horn K, Parker IM, Malek W, Rodríguez-Echeverría S, Parker MA (2014) Disparate origins of Bradyrhizobium symbionts for invasive populations of Cytisus scoparius (Leguminosae) in North America. FEMS Microbiol Ecol 89:89–98PubMedCrossRefGoogle Scholar
  104. Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Gao Y, Dong R, Chen WX (2009) Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Medicago archiducis-nicolai Vassilcz. Int J Syst Evol Microbiol 59:3051–3057PubMedCrossRefGoogle Scholar
  105. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing alpha-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460PubMedCrossRefGoogle Scholar
  106. Iglesias O, Rivas R, García-Fraile P, Abril A, Mateos PF, Martinez-Molina E, Velázquez E (2007) Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain. FEMS Microbiol Lett 277:210–216PubMedCrossRefGoogle Scholar
  107. Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2008) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429PubMedCrossRefGoogle Scholar
  108. Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380CrossRefGoogle Scholar
  109. Jarvis BDW, Downer HL, Young JPW (1992) Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int J Syst Bacteriol 42:93–96PubMedCrossRefGoogle Scholar
  110. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  111. Ji Z, Yan H, Cui Q, Wang E, Chen W, Chen W (2015) Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana. Syst Appl Microbiol 38:176–183PubMedCrossRefGoogle Scholar
  112. Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF (2015a) Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant Microbe Interact 28:1338–1352PubMedCrossRefGoogle Scholar
  113. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Guo BL, Chen WX, Chen WF (2015b) Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol 65:497–503PubMedCrossRefGoogle Scholar
  114. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF (2015c) Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 65:399–406PubMedCrossRefGoogle Scholar
  115. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  116. Jordan DC (1984) Family III Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins Co., Baltimore, pp 234–242Google Scholar
  117. Jordan DC, Allen ON (1974) Family 111. Rhizobiaceae Conn, 1938. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins Co., Baltimore, pp 261–264Google Scholar
  118. Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedCrossRefGoogle Scholar
  119. Judicial Commission of the International Committee on Systematics of Prokaryotes (2008) The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name ‘Sinorhizobium adhaerens’ is not validly published. Opinion 84. Int J Syst Evol Microbiol 58:1973CrossRefGoogle Scholar
  120. Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224PubMedCrossRefGoogle Scholar
  121. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.) Int J Syst Evol Microbiol 63:4484–4488PubMedCrossRefGoogle Scholar
  122. Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225PubMedCrossRefGoogle Scholar
  123. Kersters K, de Ley J (1984) Genus III Agrobacterium. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins Co., Baltimore, pp 244–254Google Scholar
  124. Kesari V, Ramesh AM, Rangan L (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Biomed Res Int 2013:165198PubMedPubMedCentralGoogle Scholar
  125. Khalid R, Zhang YJ, Ali S, Sui XH, Zhang XX, Amara U, Chen WX, Hayat R (2015) Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in rainfed Pothwar, Pakistan. Antonie van Leeuwenhoek 107:281–290PubMedCrossRefGoogle Scholar
  126. Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E (2015) Pseudorhizobium pelagicum gen. nov, sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 38:293–299PubMedCrossRefGoogle Scholar
  127. Kittiwongwattana C, Thawai C (2013) Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63:3823–3828PubMedCrossRefGoogle Scholar
  128. Kittiwongwattana C, Thawai C (2014) Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis. Int J Syst Evol Microbiol 64:2455–2460PubMedCrossRefGoogle Scholar
  129. Knösel DH (1984) Genus IV. Phyllobacterium nom. rev. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins Co., Baltimore, pp 254–256Google Scholar
  130. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505CrossRefGoogle Scholar
  131. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H (2005) Order Rhizobiales (new) Family Rhizobiaceae Genus Rhizobium. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) The alpha-, beta-, delta- and epsilonproteobacteria, the proteobacteria: Part C. Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 324–340Google Scholar
  132. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993PubMedCrossRefGoogle Scholar
  133. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1992) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 42:93–96CrossRefGoogle Scholar
  134. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of Rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733CrossRefGoogle Scholar
  135. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382PubMedCrossRefGoogle Scholar
  136. Lang E, Schumann P, Adler S, Spröer C, Sahin N (2013) Azorhizobium oxalatiphilum sp. nov., and emended description of the genus Azorhizobium. Int J Syst Evol Microbiol 63:1505–1511PubMedCrossRefGoogle Scholar
  137. Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JP, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400PubMedCrossRefGoogle Scholar
  138. Latif S, Khan S, Naveed M, Mustafa G, Bashir T, Mumtaz AS (2013) The diversity of Rhizobia, Sinorhizobia and novel non-rhizobial Paenibacillus nodulating wild herbaceous legumes. Arch Microbiol 195:647–653PubMedCrossRefGoogle Scholar
  139. Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape subregion (South Africa). FEMS Microbiol Ecol 91:1–17PubMedCrossRefGoogle Scholar
  140. León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuán J (2009) Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst Appl Microbiol 32:413–420PubMedCrossRefGoogle Scholar
  141. Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988PubMedCrossRefGoogle Scholar
  142. Li YH, Wang R, Zhang XX, Young JP, Wang ET, Sui XH, Chen WX (2015) Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol 65:4655–4661PubMedCrossRefGoogle Scholar
  143. Li Y, Li X, Liu Y, Wang ET, Ren C, Liu W, Xu H, Wu H, Jiang N, Li Y, Zhang X, Xie Z (2016a) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils. Syst Appl Microbiol 39:195–202PubMedCrossRefGoogle Scholar
  144. Li Y, Yan J, Yu B, Wang ET, Li X, Yan H, Liu W, Xie Z (2016b) Ensifer alkalisoli sp. nov., isolated from root nodules of Sesbania cannabina grown in saline-alkaline soils. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001510
  145. Li Y, Lei X, Xu Y, Zhu H, Xu M, Fu L, Zheng W, Zhang J, Zheng T (2017) Rhizobium albus sp. nov., isolated from lake water in Xiamen, Fujian province of China. Curr Microbiol 74:42–48PubMedCrossRefGoogle Scholar
  146. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  147. Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923PubMedCrossRefGoogle Scholar
  148. Lin SY, Hsu YH, Liu YC, Hung MH, Hameed A, Lai WA, Yen WS, Young CC (2014) Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 64:2962–2968PubMedCrossRefGoogle Scholar
  149. Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH, Wen CZ, Arun AB, Busse HJ, Glaeser SP, Kämpfer P, Young CC (2015) Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie van Leeuwenhoek 107:773–784PubMedCrossRefGoogle Scholar
  150. Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367CrossRefGoogle Scholar
  151. Liu XY, Wu W, Wang ET, Zhang B, Macdermott J, Chen WX (2011) Phylogenetic relationships and diversity of β-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int J Syst Evol Microbiol 61:334–342PubMedCrossRefGoogle Scholar
  152. Liu TY, Li Y Jr, Liu XX, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF, Puławska J (2012a) Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 35:415–420PubMedCrossRefGoogle Scholar
  153. Liu X, Wei S, Wang F, James EK, Guo X, Zagar C, Xia LG, Dong X, Wang YP (2012b) Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China. FEMS Microbiol Ecol 80:417–426PubMedCrossRefGoogle Scholar
  154. Liu Y, Wang RP, Ren C, Lai QL, Zeng RY (2015) Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater. Int J Syst Evol Microbiol 65:4449–4454PubMedCrossRefGoogle Scholar
  155. Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290PubMedCrossRefGoogle Scholar
  156. López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327PubMedCrossRefGoogle Scholar
  157. López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orrillo E, Martínez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271PubMedCrossRefGoogle Scholar
  158. Lorite MJ, Videira e Castro I, Muñoz S, Sanjuán J (2012) Phylogenetic relationship of Lotus uliginosus symbionts with bradyrhizobia nodulating genistoid legumes. FEMS Microbiol Ecol 79:454–464PubMedCrossRefGoogle Scholar
  159. Lorite MJ, Flores-Félix JD, Peix Á, Sanjuán J, Velázquez E (2016) Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 39:557–561PubMedCrossRefGoogle Scholar
  160. Lortet G, Mear N, Lorquin J, Dreyfus B, de Lajudie P, Rosenberg C, Boivin C (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant Microbe Interact 9:736–747CrossRefGoogle Scholar
  161. Lu YL, Chen WF, Han LL, Wang ET, Chen WX (2009a) Rhizobium alkalisoli sp. nov., isolated from the legume Caragana intermedia growing in saline-alkaline soils. Int J Syst Evol Microbiol 59:3006–3011CrossRefGoogle Scholar
  162. Lu YL, Chen WF, Han LL, Wang ET, Zhang XX, Chen WX, Han SZ (2009b) Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana spp. Int J Syst Evol Microbiol 59:3012–3018PubMedCrossRefGoogle Scholar
  163. Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009c) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32:351–361PubMedCrossRefGoogle Scholar
  164. Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH, Kang LH (2014) Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64:1900–1905PubMedPubMedCentralCrossRefGoogle Scholar
  165. Marek-Kozaczuk M, Leszcz A, Wielbo J, Wdowiak-Wróbel S, Skorupska A (2013) Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Syst Appl Microbiol 36:252–258PubMedCrossRefGoogle Scholar
  166. Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM, Vásquez-Murrieta MS, Estrada-de los Santos P (2013) Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 104:1063–1071PubMedCrossRefGoogle Scholar
  167. Martínez-Hidalgo P, Flores-Félix JD, Menéndez E, Rivas R, Carro L, Mateos PF, Martínez-Molina E, León-Barrios M, Velázquez E (2015a) Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Syst Appl Microbiol 38:346–350PubMedCrossRefGoogle Scholar
  168. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, León-Barrios M, Peix Á, Velázquez E (2015b) Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 65:1703–1708PubMedCrossRefGoogle Scholar
  169. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Igual JM, Sanjuán J, León-Barrios M, Peix A, Velázquez E (2016) Reclassification of strains MAFF 303099T and R7A into the new species Mesorhizobium japonicum sp. nov. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001448
  170. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici: a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426PubMedCrossRefGoogle Scholar
  171. Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel JC, Brunel B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72PubMedCrossRefGoogle Scholar
  172. Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674PubMedCrossRefGoogle Scholar
  173. Mergaert J, Swings J (2005) Genus I. Phyllobacterium (ex Knösel 1962) Knösel 1984, 356VP (Effective publication: Knösel 1984, 254). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology: Part C, vol 2, 2nd edn. Springer, New York, pp 394–396CrossRefGoogle Scholar
  174. Mierzwa B, Łotocka B, Wdowiak-Wróbel S, Kalita M, Gnat S, Małek W (2010) Insight into the evolutionary history of symbiotic genes of Robinia pseudoacacia rhizobia deriving from Poland and Japan. Arch Microbiol 192:341–350PubMedCrossRefGoogle Scholar
  175. Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85PubMedCrossRefGoogle Scholar
  176. Mnasri B, Saïdi S, Chihaoui SA, Mhamdi R (2012) Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 35:263–269PubMedCrossRefGoogle Scholar
  177. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950. Erratum in: Nature 412:926PubMedCrossRefGoogle Scholar
  178. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215PubMedCrossRefGoogle Scholar
  179. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90PubMedCrossRefGoogle Scholar
  180. Mousavi SA, Li L, Wei G, Räsänen L, Lindström K (2016) Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China. Syst Appl Microbiol. doi: 10.1016/j.syapm.2016.03.009
  181. Nakatsukasa H, Uchiumi T, Kucho K, Suzuki A, Higashi S, Abe M (2008) Transposon mediation allows a symbiotic plasmid of Rhizobium leguminosarum bv. trifolii to become a symbiosis island in Agrobacterium and Rhizobium. J Gen Appl Microbiol 54:107–118PubMedCrossRefGoogle Scholar
  182. Nandasena KG, O'Hara GW, Tiwari RP, Willlems A, Howieson JG (2007) Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. Int J Syst Evol Microbiol 57:1041–1045PubMedCrossRefGoogle Scholar
  183. Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov. isolated from Biserrula pelecinus L. growing in Australia. Int J Syst Evol Microbiol 59:2140–2147PubMedCrossRefGoogle Scholar
  184. Nguyen TM, Pham VH, Kim J (2015) Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia pseudoacacia L. in South Korea by using a modified culture method. Antonie van Leeuwenhoek 108:301–310PubMedCrossRefGoogle Scholar
  185. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368PubMedCrossRefGoogle Scholar
  186. Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J, Ronson C, Teaumroong N (2010) Heavy metal tolerant Metalliresistens boonkerdii gen. nov, sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Syst Appl Microbiol 33:374–382. Erratum in: Syst Appl Microbiol 34:166–168PubMedCrossRefGoogle Scholar
  187. Norel FF, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. Microbiology 133:1563–1576CrossRefGoogle Scholar
  188. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.) Int J Syst Bacteriol 44:511–522PubMedCrossRefGoogle Scholar
  189. Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648PubMedCrossRefGoogle Scholar
  190. Ogasawara M, Suzuki T, Mutoh I, Annapurna K, Arora NK, Nishimura Y, Maheshwari DK (2003) Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68Google Scholar
  191. Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446PubMedGoogle Scholar
  192. Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40:236–241CrossRefGoogle Scholar
  193. Oren A, Garrity GM (2015a) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 65:741–744CrossRefGoogle Scholar
  194. Oren A, Garrity GM (2015b) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 65:2017–2025CrossRefGoogle Scholar
  195. Oren A, Garrity GM (2015c) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 65:2777–2783CrossRefGoogle Scholar
  196. Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.) BMC Genomics 13:735PubMedPubMedCentralCrossRefGoogle Scholar
  197. Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.) Int J Syst Evol Microbiol 61:2632–2639PubMedCrossRefGoogle Scholar
  198. Parag B, Sasikala C, Ramana CV (2013) Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie van Leeuwenhoek 104:1235–1244PubMedCrossRefGoogle Scholar
  199. Peix A, Ramírez-Bahena MH, Flores-Félix JD, Alonso de la Vega P, Rivas R, Mateos PF, Igual JM, Martínez-Molina E, Trujillo ME, Velázquez E (2015a) Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov. Int J Syst Evol Microbiol 65:1213–1219PubMedCrossRefGoogle Scholar
  200. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmard EJ (2015b) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42CrossRefGoogle Scholar
  201. Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163PubMedCrossRefGoogle Scholar
  202. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedPubMedCentralCrossRefGoogle Scholar
  203. Platero R, James EK, Rios C, Iriarte A, Sandes L, Zabaleta M, Battistoni F, Fabiano E (2016) Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl Environ Microbiol. pii: AEM.04142-15Google Scholar
  204. Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318PubMedCrossRefGoogle Scholar
  205. Puławska J, Kuzmanović N, Willems A, Pothier JF (2016) Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 39:164–169PubMedCrossRefGoogle Scholar
  206. Qin W, Deng ZS, Xu L, Wang NN, Wei GH (2012) Rhizobium helanshanense sp. nov., a bacterium that nodulates Sphaerophysa salsula (Pall.) DC. in China. Arch Microbiol 194:371–378PubMedCrossRefGoogle Scholar
  207. Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549PubMedCrossRefGoogle Scholar
  208. Radeva G, Jurgens G, Niemi M, Nick G, Suominen L, Lindström K (2001) Description of two biovars in the Rhizobium galegae species: Biovar orientalis and biovar officinalis. Syst Appl Microbiol 24:192–205PubMedCrossRefGoogle Scholar
  209. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM, Xavier GR, Rumjanek NG, Baldani JI, Zilli JE (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725–730PubMedCrossRefGoogle Scholar
  210. Ramana CV, Parag B, Girija KR, Ram BR, Ramana VV, Sasikala C (2013) Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585PubMedCrossRefGoogle Scholar
  211. Ramírez Bahena MH, Flores Félix JD, Chahboune R, Toro M, Velázquez E, Peix A (2016) Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 39:378–383PubMedCrossRefGoogle Scholar
  212. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490PubMedCrossRefGoogle Scholar
  213. Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934PubMedCrossRefGoogle Scholar
  214. Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 35:334–341PubMedCrossRefGoogle Scholar
  215. Ramírez-Bahena MH, Chahboune R, Peix A, Velázquez E (2013a) Reclassification of Agromonas oligotrophica into the genus Bradyrhizobium as Bradyrhizobium oligotrophicum comb. nov. Int J Syst Evol Microbiol 63:1013–1016PubMedCrossRefGoogle Scholar
  216. Ramírez-Bahena MH, Chahboune R, Velázquez E, Gómez-Moriano A, Mora E, Peix A, Toro M (2013b) Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst Appl Microbiol 36:392–400PubMedCrossRefGoogle Scholar
  217. Rashid MH, Young JP, Everall I, Clercx P, Willems A, Santhosh Braun M, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65:3037–3045PubMedCrossRefGoogle Scholar
  218. Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Béna G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B, Avarre JC (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to alpha- and beta-Proteobacteria. Mol Ecol 14:4135–4146PubMedCrossRefGoogle Scholar
  219. Relic B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178PubMedCrossRefGoogle Scholar
  220. Ren d W, Chen WF, Sui XH, Wang ET, Chen WX (2011a) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int J Syst Evol Microbiol 61:580–586CrossRefGoogle Scholar
  221. Ren d W, Wang ET, Chen WF, Sui XH, Zhang XX, Liu HC, Chen WX (2011b) Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61:1912–1920CrossRefGoogle Scholar
  222. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184PubMedCrossRefGoogle Scholar
  223. Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA, Martínez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65:3162–3169PubMedCrossRefGoogle Scholar
  224. Rincón-Rosales R, Lloret L, Ponce E, Martínez-Romero E (2009) Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 67:103–117PubMedCrossRefGoogle Scholar
  225. Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E, Martínez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov. rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63:3423–3429PubMedCrossRefGoogle Scholar
  226. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68:5217–5222PubMedPubMedCentralCrossRefGoogle Scholar
  227. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53PubMedCrossRefGoogle Scholar
  228. Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF, Martínez-Molina E, Gillis M, Velázquez E (2004) Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 54:1271–1275PubMedCrossRefGoogle Scholar
  229. Rivas R, Laranjo M, Mateos PF, Oliveira S, Martínez-Molina E, Velázquez E (2007) Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 44:412–418PubMedCrossRefGoogle Scholar
  230. Robledo M, Velázquez E, Ramírez-Bahena MH, García-Fraile P, Pérez-Alonso A, Rivas R, Martínez-Molina E, Mateos PF (2011) The celC gene, a new phylogenetic marker useful for taxonomic studies in Rhizobium. Syst Appl Microbiol 34:393–399PubMedCrossRefGoogle Scholar
  231. Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome JC, Denarié J (1996) The common nodabc genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci U S A 93:15305–15310PubMedPubMedCentralCrossRefGoogle Scholar
  232. Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martínez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268PubMedPubMedCentralCrossRefGoogle Scholar
  233. Rogel MA, Ormeño-Orrillo E, Martinez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104PubMedCrossRefGoogle Scholar
  234. Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W, Carlos Alberto Padilla J, Wu Guo X, Lian Gao J, Yan J, Hong Wei G, Tao Wang E (2016) Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 66:398–406PubMedCrossRefGoogle Scholar
  235. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980PubMedCrossRefGoogle Scholar
  236. Rosenberg C, Boistard P, Dénarié J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genetics 184:326–333Google Scholar
  237. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M, Mamtimin H, Abdukerim M, Lal R, Rahman E (2014) Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 64:3215–3221PubMedCrossRefGoogle Scholar
  238. Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A, Mhamdi R, Velázquez E (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247PubMedCrossRefGoogle Scholar
  239. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429PubMedPubMedCentralCrossRefGoogle Scholar
  240. Schofield PR, Watson JM (1986) DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucl Acids Res 14:2891–2903PubMedPubMedCentralCrossRefGoogle Scholar
  241. Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486CrossRefGoogle Scholar
  242. Segovia L, Young JP, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377PubMedCrossRefGoogle Scholar
  243. Shamseldin A, Carro L, Peix A, Velázquez E, Moawad H, Sadowsky MJ (2016) The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. Syst Appl Microbiol. doi: 10.1016/j.syapm.2016.05.002
  244. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, James EK, Sprent JI, Young JP, Chen WM (2012) Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 62:2272–2278PubMedCrossRefGoogle Scholar
  245. Sheu SY, Chen MH, Liu WY, Andrews M, James EK, Ardley JK, De Meyer SE, James TK, Howieson JG, Coutinho BG, Chen WM (2015a) Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 65:4716–4723PubMedCrossRefGoogle Scholar
  246. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, dos Reis Junior FB, Melkonian R, Moulin L, James EK, Sprent JI, Young JP, Chen WM (2015b) Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 63:435–441CrossRefGoogle Scholar
  247. Sheu SY, Huang HW, Young CC, Chen WM (2015c) Rhizobium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 65:472–478PubMedCrossRefGoogle Scholar
  248. Sheu SY, Chen ZH, Young CC, Chen WM (2016) Rhizobium ipomoeae sp. nov., isolated from a water convolvulus field. Int J Syst Evol Microbiol 66:1633–1640PubMedCrossRefGoogle Scholar
  249. Shi X, Li C, Zhao L, Si M, Zhu L, Xin K, Chen C, Wang Y, Shen X, Zhang L (2016) Rhizobium gei sp. nov., a bacterial endophyte of Geum aleppicum. Int J Syst Evol Microbiol 66:4282–4288PubMedCrossRefGoogle Scholar
  250. Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274PubMedCrossRefGoogle Scholar
  251. da Silva K, Florentino LA, Barroso da Silva KB, de Brandt E, Vandamme P, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182PubMedCrossRefGoogle Scholar
  252. da Silva K, De Meyer SE, Rouws LF, Farias EN, dos Santos MA, O'Hara G, Ardley JK, Willems A, Pitard RM, Zilli JE (2014) Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int J Syst Evol Microbiol 64:3395–3401PubMedCrossRefGoogle Scholar
  253. Silva FV, De Meyer SE, Simões-Araújo JL, Barbé Tda C, Xavier GR, O'Hara G, Ardley JK, Rumjanek NG, Willems A, Zilli JE (2014) Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. Int J Syst Evol Microbiol 64:2358–2363PubMedCrossRefGoogle Scholar
  254. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  255. Sokal RR, Sneath P (1963) Principles of numerical taxonomy. WH Freeman, San FranciscoGoogle Scholar
  256. Souza Moreira MF, Cruz L, Miana de Faria S, Marsh T, Martínez-Romero E, de Oliveira Pedrosa F, Pitard MR, Young PWJ (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206CrossRefGoogle Scholar
  257. Squartini A, Struffi P, Döring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velázquez E, Mateos PF, Martínez-Molina E, Dazzo FB, Casella S, Nuti MP (2002) Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276PubMedGoogle Scholar
  258. Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144PubMedCrossRefGoogle Scholar
  259. Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY, Palmer M, Mthombeni LS, Phalane FL, Sereme TK, Venter SN (2015) Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 38:545–554PubMedCrossRefGoogle Scholar
  260. Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264PubMedPubMedCentralCrossRefGoogle Scholar
  261. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095PubMedPubMedCentralCrossRefGoogle Scholar
  262. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedPubMedCentralCrossRefGoogle Scholar
  263. Talbi C, Delgado MJ, Girard L, Ramírez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591PubMedPubMedCentralCrossRefGoogle Scholar
  264. Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914PubMedCrossRefGoogle Scholar
  265. Taulé C, Zabaleta M, Mareque C, Platero R, Sanjurjo L, Sicardi M, Frioni L, Battistoni F, Fabiano E (2012) New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol 78:1692–1700PubMedPubMedCentralCrossRefGoogle Scholar
  266. Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875PubMedCrossRefGoogle Scholar
  267. Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64PubMedCrossRefGoogle Scholar
  268. Torres Tejerizo G, Rogel MA, Ormeño-Orrillo E, Althabegoiti MJ, Nilsson JF, Niehaus K, Schlüter A, Pühler A, Del Papa MF, Lagares A, Martínez-Romero E, Pistorio M (2016) Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L.) Int J Syst Evol Microbiol 66:4451–4457PubMedCrossRefGoogle Scholar
  269. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327PubMedPubMedCentralCrossRefGoogle Scholar
  270. Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z, Abaydulla G, Abdukerim M, Fang C, Rahman E (2013) Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 63:2424–2429PubMedCrossRefGoogle Scholar
  271. Validation List no. 107 (2006) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:1–6CrossRefGoogle Scholar
  272. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989PubMedCrossRefGoogle Scholar
  273. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637PubMedCrossRefGoogle Scholar
  274. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289PubMedCrossRefGoogle Scholar
  275. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512PubMedCrossRefGoogle Scholar
  276. Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021PubMedCrossRefGoogle Scholar
  277. Velázquez E, Peix A, Zurdo-Piñeiro JL, Palomo JL, Mateos PF, Rivas R, Muñoz-Adelantado E, Toro N, García-Benavides P, Martínez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumours or hairy roots in plants. Mol Plant Microbe Interact 18:1325–1332PubMedCrossRefGoogle Scholar
  278. Velázquez E, García-Fraile P, Ramírez-Bahena MH, Rivas R, Martínez-Molina E (2010a) Bacteria involved in nitrogen-fixing legume symbiosis: current taxonomic perspective. In: Khan MS, Zaidi A, Mussarrat J (eds) Microbes for legume improvement. Springer, Germany, pp 1–25Google Scholar
  279. Velázquez E, Palomo JL, Rivas R, Guerra H, Peix A, Trujillo ME, García-Benavides P, Mateos PF, Wabiko H, Martínez-Molina E (2010b) Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Syst Appl Microbiol 33:247–251PubMedCrossRefGoogle Scholar
  280. Verástegui-Valdés MM, Zhang YJ, Rivera-Orduña FN, Cheng HP, Sui XH, Wang ET (2014) Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico. Syst Appl Microbiol 37:605–612PubMedCrossRefGoogle Scholar
  281. Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855PubMedCrossRefGoogle Scholar
  282. Villegas MC, Rome S, Mauré L, Domergue O, Gardan L, Bailly X, Cleyet-Marel JC, Brunel B (2006) Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol 29:526–538CrossRefGoogle Scholar
  283. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575PubMedCrossRefGoogle Scholar
  284. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699PubMedCrossRefGoogle Scholar
  285. Wang ET, Rogel MA, García-de los Santos A, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999a) Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491PubMedCrossRefGoogle Scholar
  286. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65PubMedCrossRefGoogle Scholar
  287. Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693PubMedGoogle Scholar
  288. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199PubMedCrossRefGoogle Scholar
  289. Wang F, Wang ET, Wu LJ, Sui XH, Li Y Jr, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61:2582–2588PubMedCrossRefGoogle Scholar
  290. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX (2013a) Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 63:616–624PubMedCrossRefGoogle Scholar
  291. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX (2013b) Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 36:101–105PubMedCrossRefGoogle Scholar
  292. Wang YC, Wang F, Hou BC, Wang ET, Chen WF, Sui XH, Chen WX, Li Y, Zhang YB (2013c) Proposal of Ensifer psoraleae sp. nov, Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol 36:467–473PubMedCrossRefGoogle Scholar
  293. Wang L, Cao Y, Wang ET, Qiao YJ, Jiao S, Liu ZS, Zhao L, Wei GH (2016) Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst Appl Microbiol 39:211–219PubMedCrossRefGoogle Scholar
  294. Wdowiak-Wróbel S, Małek W (2010) Following phylogenetic tracks of Astragalus cicer microsymbionts. Antonie van Leeuwenhoek 97:21–34PubMedCrossRefGoogle Scholar
  295. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239PubMedGoogle Scholar
  296. Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583PubMedCrossRefGoogle Scholar
  297. Wei G, Chen W, Zhu W, Chen C, Young JP, Bontemps C (2009) Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol Ecol 68:320–328PubMedCrossRefGoogle Scholar
  298. Wei X, Yan S, Li D, Pang H, Li Y, Zhang J (2015) Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower. Int J Syst Evol Microbiol 65:4455–4460PubMedCrossRefGoogle Scholar
  299. Wen Y, Zhang J, Yan Q, Li S, Hong Q (2011) Rhizobium phenanthrenilyticum sp. nov., a novel phenanthrene-degrading bacterium isolated from a petroleum residue treatment system. J Gen Appl Microbiol 57:319–329PubMedCrossRefGoogle Scholar
  300. Willems A, Fernández-López M, Muñoz-Adelantado E, Goris J, De Vos P, Martínez-Romero E, Toro N, Gillis M (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int J Syst Evol Microbiol 53:1207–1217PubMedCrossRefGoogle Scholar
  301. Wilson JK (1939) Leguminous plants and their associated organisms. Cornell University Press, NYGoogle Scholar
  302. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090PubMedPubMedCentralCrossRefGoogle Scholar
  303. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326PubMedCrossRefGoogle Scholar
  304. Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711PubMedCrossRefGoogle Scholar
  305. Xu L, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie van Leeuwenhoek 99:845–854PubMedCrossRefGoogle Scholar
  306. Xu L, Zhang Y, Deng ZS, Zhao L, Wei XL, Wei GH (2013) Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie van Leeuwenhoek 103:559–565PubMedCrossRefGoogle Scholar
  307. Yan H, Yan J, Sui XH, Wang ET, Chen WX, Zhang XX, Chen WF (2016) Ensifer glycinis sp. nov., an novel rhizobial species associated with Glycine spp. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001120
  308. Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ (2017) Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 199:97–104PubMedCrossRefGoogle Scholar
  309. Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120PubMedCrossRefGoogle Scholar
  310. Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230PubMedGoogle Scholar
  311. Yao LJ, Shen YY, Zhan JP, Xu W, Cui GL, Wei GH (2012) Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int J Syst Evol Microbiol 62:335–341PubMedCrossRefGoogle Scholar
  312. Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX (2015) Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol 65:1831–1837PubMedCrossRefGoogle Scholar
  313. Yoon JH, Kang SJ, Yi HS, Oh TK, Ryu CM (2010) Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1387–1393PubMedCrossRefGoogle Scholar
  314. Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination “Sinorhizobium adhaerens” Casida 1982 Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110PubMedCrossRefGoogle Scholar
  315. Young JM, Kuykendall LD, Martínez -Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103PubMedCrossRefGoogle Scholar
  316. Yu X, Cloutier S, Tambong JT, Bromfield ES (2014) Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 64:3202–3207PubMedPubMedCentralCrossRefGoogle Scholar
  317. Yuan CG, Jiang Z, Xiao M, Zhou EM, Kim CJ, Hozzein WN, Park DJ, Zhi XY, Li WJ (2016) Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 66:4797–4802PubMedCrossRefGoogle Scholar
  318. Zhang RJ, Hou BC, Wang ET, Li Y Jr, Zhang XX, Chen WX (2011a) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517PubMedCrossRefGoogle Scholar
  319. Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD, Chen JL, Tan ZY, Sun GP (2011b) Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61:816–822PubMedCrossRefGoogle Scholar
  320. Zhang X, Sun L, Ma X, Sui XH, Jiang R (2011c) Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61:2425–2429PubMedCrossRefGoogle Scholar
  321. Zhang YM, Li Y Jr, Chen WF, Wang ET, Sui XH, Li QQ, Zhang YZ, Zhou YG, Chen WX (2012a) Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol 62:1951–1957PubMedCrossRefGoogle Scholar
  322. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012b) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742PubMedCrossRefGoogle Scholar
  323. Zhang X, Li B, Wang H, Sui X, Ma X, Hong Q, Jiang R (2012c) Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62:1871–1876PubMedCrossRefGoogle Scholar
  324. Zhang XX, Tang X, Sheirdil RA, Sun L, Ma XT (2014a) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377PubMedCrossRefGoogle Scholar
  325. Zhang JJ, Yu T, Lou K, Mao PH, Wang ET, Chen WF, Chen WX (2014b) Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol 37:520–524PubMedCrossRefGoogle Scholar
  326. Zhang L, Shi X, Si M, Li C, Zhu L, Zhao L, Shen X, Wang Y (2014c) Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica. Antonie van Leeuwenhoek 106:715–723PubMedCrossRefGoogle Scholar
  327. Zhang XX, Gao JS, Cao YH, Sheirdil RA, Wang XC, Zhang L (2015a) Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 65:2931–2936PubMedCrossRefGoogle Scholar
  328. Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX, Tian CF, Sui XH, Wang ET, Chen WX (2015b) Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 65:2960–2967PubMedCrossRefGoogle Scholar
  329. Zhao CT, Wang ET, Zhang YM, Chen WF, Sui XH, Chen WX, Liu HC, Zhang XX (2012) Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int J Syst Evol Microbiol 62:2180–2186PubMedCrossRefGoogle Scholar
  330. Zhao JJ, Zhang J, Sun L, Zhang RJ, Zhang CW, Yin HQ, Zhang XX (2016) Rhizobium oryziradicis sp. nov., isolated from the root of rice. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001724
  331. Zheng WT, Li Y Jr, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX (2013) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63:2002–2007PubMedCrossRefGoogle Scholar
  332. Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60:2552–2556PubMedCrossRefGoogle Scholar
  333. Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63:2794–2799PubMedCrossRefGoogle Scholar
  334. Zhu YJ, Kun J, Chen YL, Wang SK, Sui XH, Kang LH (2015) Mesorhizobium acaciae sp. nov., isolated from root nodules of Acacia melanoxylon R. Br. Int J Syst Evol Microbiol 65:3558–3563PubMedPubMedCentralCrossRefGoogle Scholar
  335. Zilli JE, Baraúna AC, da Silva K, De Meyer SE, Farias EN, Kaminski PE, da Costa IB, Ardley JK, Willems A, Camacho NN, Dourado Fdos S, O'Hara G (2014) Bradyrhizobium neotropicale sp. nov, isolated from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 64:3950–3957PubMedCrossRefGoogle Scholar
  336. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788PubMedCrossRefGoogle Scholar
  337. Zurdo-Piñeiro JL, García-Fraile P, Rivas R, Peix A, León-Barrios M, Willems A, Mateos PF, Martínez-Molina E, Velázquez E, van Berkum P (2009) Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti from mainland Spain. Appl Environ Microbiol 75:2354–2359PubMedPubMedCentralCrossRefGoogle Scholar
  338. Zurkowski W, Lorkiewicz Z (1979) Plasmid-mediated control of nodulation in Rhizobium trifolii. Arch Microbiol 123:195–201CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Encarna Velázquez
    • 1
    Email author
  • Paula García-Fraile
    • 2
  • Martha-Helena Ramírez-Bahena
    • 1
  • Raúl Rivas
    • 1
  • Eustoquio Martínez-Molina
    • 1
  1. 1.Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Edificio Departamental de Biología, Doctores de la Reina s/nUniversidad de SalamancaSalamancaSpain
  2. 2.Microbiology InstituteAcademy of Science of the Czech RepublicPragueCzech Republic

Personalised recommendations