Methodology of the Construction of a GDPLL(k) Grammar-Based Syntactic Pattern Recognition System

  • Mariusz FlasińskiEmail author
  • Janusz Jurek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)


GDPLL(k) grammars have been introduced as a tool for the construction of syntactic pattern recognition-based systems. The grammars have been successfully used in several different applications. The practical experience with the implementation of a syntactic pattern recognition system based on GDPLL(k) grammars has served to define methodological guidelines for constructing such systems. In the paper key methodological issues are presented.


  1. 1.
    Bunke, H.O., Sanfeliu, A. (eds.): Syntactic and Structural Pattern Recognition – Theory and Applications. World Scientific, Singapore (1990)zbMATHGoogle Scholar
  2. 2.
    Flasiński, M.: Chapter 1: Syntactic pattern recognition: paradigm issues and open problems. In: Chen, C.H. (ed.) Handbook of Pattern Recognition and Computer Vision, 5th edn., pp. 3–25. World Scientific, London (2016)Google Scholar
  3. 3.
    Flasiński, M., Jurek, J.: Dynamically programmed automata for quasi context sensitive languages as a tool for inference support in pattern recognition-based real-time control expert systems. Pattern Recogn. 32, 671–690 (1999)CrossRefGoogle Scholar
  4. 4.
    Flasiński, M., Jurek, J.: On the analysis of fuzzy string patterns with the help of extended and stochastic GDPLL(k) grammars. Fundamenta Informaticae 71, 1–14 (2006). IOS Press, Amsterdam, Berlin, OxfordMathSciNetzbMATHGoogle Scholar
  5. 5.
    Flasiński, M., Jurek, J.: Syntactic Pattern Recognition: Survey of Frontiers and Crucial Methodological Issues, Advances in Intelligent and Soft Computing 95, 187–196. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  6. 6.
    Flasiński, M., Jurek, J.: Fundamental methodological issues of syntactic pattern recognition. Pattern Anal. Appl. 17, 465–480 (2014). Springer, HeidelbergMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Flasiński, M., Jurek, J., Peszek, T.: Application of syntactic pattern recognition methods for electrical load forecasting. Adv. Intell. Syst. Comput. 403, 599–608 (2016). Springer, SwitzerlandGoogle Scholar
  8. 8.
    Flasiński, M., Jurek, J., Peszek, T.: Analysis of fuzzy string patterns with the help of syntactic pattern recognition. Adv. Intell. Syst. Comput. 400, 115–126 (2016). Springer, SwitzerlandGoogle Scholar
  9. 9.
    Flasiński, M., Reroń, E., Jurek, J., Wójtowicz, P., Atłasiewicz, K.: Mathematical linguistics model for medical diagnostics of organ of hearing in neonates. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2003. LNCS, vol. 3019, pp. 746–753. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24669-5_98 CrossRefGoogle Scholar
  10. 10.
    Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  11. 11.
    Gonzales, R.C., Thomason, M.G.: Syntactic Pattern Recognition: An Introduction. Addison-Wesley, Reading (1978)zbMATHGoogle Scholar
  12. 12.
    Jurek, J.: Towards grammatical inferencing of GDPLL(k) grammars for applications in syntactic pattern recognition-based expert systems. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 604–609. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24844-6_91 CrossRefGoogle Scholar
  13. 13.
    Jurek, J.: Recent developments of the syntactic pattern recognition model based on quasi-context sensitive languages. Pattern Recogn. Lett. 26, 1011–1018 (2005). Elsevier, AmsterdamCrossRefGoogle Scholar
  14. 14.
    Jurek, J.: Syntactic Pattern Recognition with the Help of GDPLL(k) Grammars (in Polish). Jagiellonian University Publishers, Cracow (2005)Google Scholar
  15. 15.
    Jurek, J.: Grammatical inference as a tool for constructing self-learning syntactic pattern recognition-based agents. LNCS, vol. 5103, pp. 712–721. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69389-5
  16. 16.
    Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)CrossRefzbMATHGoogle Scholar
  17. 17.
    Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)CrossRefGoogle Scholar
  18. 18.
    Tanaka, E.: Theoretical aspects of syntactic pattern recognition. Pattern Recogn. 28, 1053–1061 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Information Technology Systems DepartmentJagiellonian UniversityCracowPoland

Personalised recommendations