Skip to main content

Bayesian Optimization of a Hybrid Prediction System for Optimal Wave Energy Estimation Problems

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

  • 1925 Accesses

Abstract

In the last years, Bayesian optimization (BO) has emerged as a practical tool for high-quality parameter selection in prediction systems. BO methods are useful for optimizing black-box objective functions that either lack an analytical expression, or are very expensive to evaluate. In this paper we show how BO can be used to obtain optimal parameters of a prediction system for a problem of wave energy flux prediction. Specifically, we propose the Bayesian optimization of a hybrid Grouping Genetic Algorithm with an Extreme Learning Machine (GGA-ELM) approach. The system uses data from neighbor stations (usually buoys) in order to predict the wave energy at a goal marine energy facility. The proposed BO methodology has been tested in a real problem involving buoys data in the Western coast of the USA, improving the performance of the GGA-ELM without a BO approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arinaga, R.A., Cheung, K.F.: Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew. Energy 39, 49–64 (2012)

    Article  Google Scholar 

  2. Fadaeenejad, M., Shamsipour, R., Rokni, S.D., Gomes, C.: New approaches in harnessing wave energy: with special attention to small Islands. Renew. Sustain. Energy Rev. 29, 345–354 (2014)

    Article  Google Scholar 

  3. Hong, Y., Waters, R., Boström, C., Eriksson, M., Engström, J., et al.: Review on electrical control strategies for wave energy converting systems. Renew. Sustain. Energy Rev. 31, 329–342 (2014)

    Article  Google Scholar 

  4. Cuadra, L., Salcedo-Sanz, S., Nieto-Borge, J.C., Alexandre, E., Rodríguez, G.: Computational intelligence in wave energy: comprehensive review and case study. Ren. Sustain. Energ. Rev. 58, 1223–1246 (2016)

    Article  Google Scholar 

  5. Deo, M.C., Naidu, C.S.: Real time wave prediction using neural networks. Ocean Eng. 26(3), 191–203 (1998)

    Article  Google Scholar 

  6. Tsai, C.P., Lin, C., Shen, J.N.: Neural network for wave forecasting among multi-stations. Ocean Eng. 29(13), 1683–1695 (2002)

    Article  Google Scholar 

  7. Castro, A., Carballo, R., Iglesias, G., Rabuñal, J.R.: Performance of artificial neural networks in nearshore wave power prediction. Appl. Soft Comput. 23, 194–201 (2014)

    Article  Google Scholar 

  8. Zanaganeh, M., Jamshid-Mousavi, S., Etemad-Shahidi, A.F.: A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intell. 22(8), 1194–1202 (2009)

    Article  Google Scholar 

  9. Alexandre, E., Cuadra, L., Nieto-Borge, J.C., Candil-García, G., del Pino, M., Salcedo-Sanz, S.: A hybrid genetic algorithm - extreme learning machine approach for accurate significant wave height reconstruction. Ocean Model. 92, 115–123 (2015)

    Article  Google Scholar 

  10. Cornejo-Bueno, L., Nieto-Borge, J.C., García-Díaz, P., Rodríguez, G., Salcedo-Sanz, S.: Significant wave height and energy flux prediction for marine energy applications: a grouping genetic algorithm - extreme learning machine approach. Renew. Energy 97, 380–389 (2016)

    Article  Google Scholar 

  11. Mahjoobi, J., Mosabbeb, E.A.: Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36(5), 339–347 (2009)

    Article  Google Scholar 

  12. Salcedo-Sanz, S., Nieto-Borge, J.C., Carro-Calvo, L., Cuadra, L., Hessner, K., Alexandre, E.: Significant wave height estimation using SVR algorithms and shadowing information from simulated and real measured X-band radar images of the sea surface. Ocean Eng. 101, 244–253 (2015)

    Article  Google Scholar 

  13. Cornejo-Bueno, L., Nieto-Borge, J.C., Alexandre, E., Hessner, K., Salcedo-Sanz, S.: Accurate estimation of significant wave height with support vector regression algorithms and marine radar images. Coast. Eng. 114, 233–243 (2016)

    Article  Google Scholar 

  14. Fernández, J.C., Salcedo-Sanz, S., Gutiérrez, P.A., Alexandre, E., Hervás-Martínez, C.: Significant wave height and energy flux range forecast with machine learning classifiers. Eng. Appl. Artif. Intell. 43, 44–53 (2015)

    Article  Google Scholar 

  15. Nitsure, S.P., Londhe, S.N., Khare, K.C.: Wave forecasts using wind information and genetic programming. Ocean Eng. 54, 61–69 (2012)

    Article  Google Scholar 

  16. Özger, M.: Prediction of ocean wave energy from meteorological variables by fuzzy logic modeling. Expert Syst. Appl. 38(5), 6269–6274 (2011)

    Article  Google Scholar 

  17. Goda, Y.: Random Seas and Design of Maritime Structures. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  18. Falkenauer, E.: The grouping genetic algorithm-widening the scope of the GAs. Belg. J. Oper. Res. Stat. Comput. Sci. 33, 79–102 (1992)

    MATH  Google Scholar 

  19. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  20. Huang, G.B., Zhu, Q.Y.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  21. Huang, G.B.: ELM matlab code. http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

  22. Snoek, J., Hugo L., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems (2012)

    Google Scholar 

  23. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards Glob. Optim. 2(117–129), 2 (1978)

    MATH  Google Scholar 

  24. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  25. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Article  Google Scholar 

  26. Rasmussen, C.E.: Gaussian processes for machine learning (2006)

    Google Scholar 

  27. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. NOAA, National Data Buoy Center. http://www.ndbc.noaa.gov/

  29. Albert, A.: Regression and the Moore-Penrose pseudoinverse (No. 519.536) (1972)

    Google Scholar 

  30. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  31. Salcedo-Sanz, S., Rojo, J.L., Martínez-Ramón, M., Camps-Valls, G.: Support vector machines in engineering: an overview. WIREs Data Mining Knowl. Discov. 4(3), 234–267 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Comunidad de Madrid, under projects number S2013/ICE-2933 and S2013/ICE-2845, and by National projects TIN2014-54583-C2-2-R, TIN2013-42351-P and TIN2016-76406-P of the Spanish Ministerial Commission of Science and Technology (MICYT). We acknowledge support by DAMA network TIN2015-70308-REDT. We acknowledge the use of the facilities of Centro de Computación Científica de la UAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sancho Salcedo-Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cornejo-Bueno, L., Garrido-Merchán, E.C., Hernández-Lobato, D., Salcedo-Sanz, S. (2017). Bayesian Optimization of a Hybrid Prediction System for Optimal Wave Energy Estimation Problems. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics