Skip to main content

An End-User Interface to Generate Homeostatic Behavior for NAO Robot in Robot-Assisted Social Therapies

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10306)

Abstract

Homeostatic drive theory is a popular approach for decision-making of robot behavior in social robotic research. It is potentially to be used in social therapies. To increase the involvement of end-users in the robot’s control, we present an end-user interface allowing the therapists to generate homeostatic behavior for NAO robot in social skills training for children. We demonstrate the system by two interactions in which the robot homeostatic behavior is adapted to children’s behavior. The result shows that the system provides a practical solution for therapists to implement interaction scenarios to robot behavior.

Keywords

  • Homeostasis
  • Robot behavior
  • End-user development
  • NAO
  • Robot-Assisted Therapy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59147-6_52
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-59147-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Arkin, R.C., Fujita, M., Takagi, T., Hasegawa, R.: An ethological and emotional basis for human-robot interaction. Robot. Auton. Syst. 42(3), 191–201 (2003)

    CrossRef  MATH  Google Scholar 

  2. Bach, J.: Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition, vol. 4. Oxford University Press, Oxford (2009)

    CrossRef  Google Scholar 

  3. Barakova, E.I., Bajracharya, P., Willemsen, M., Lourens, T., Huskens, B.: Long-term LEGO therapy with humanoid robot for children with ASD. Expert Syst. 32(6), 698–709 (2015)

    CrossRef  Google Scholar 

  4. Barakova, E.I., Gillesen, J.C., Huskens, B.E., Lourens, T.: End-user programming architecture facilitates the uptake of robots in social therapies. Robot. Auton. Syst. 61(7), 704–713 (2013)

    CrossRef  Google Scholar 

  5. Belpaeme, T., Baxter, P.E., Read, R., Wood, R., Cuayáhuitl, H., Kiefer, B., Racioppa, S., Kruijff-Korbayová, I., Athanasopoulos, G., Enescu, V., et al.: Multimodal child-robot interaction: building social bonds. J. Hum. Robot Interact. 1(2), 33–53 (2012)

    Google Scholar 

  6. Berridge, K.C.: Motivation concepts in behavioral neuroscience. Physiol. Behav. 81(2), 179–209 (2004)

    CrossRef  Google Scholar 

  7. Breazeal, C.: Designing Sociable Robots. MIT press, Cambridge (2004)

    MATH  Google Scholar 

  8. Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)

    CrossRef  Google Scholar 

  9. Cañamero, L., Lewis, M.: Making new “new AI” friends: designing a social robot for diabetic children from an embodied AI perspective. Int. J. Soc. Robot. 8(4), 523–537 (2016)

    CrossRef  Google Scholar 

  10. Cao, H.-L., et al.: Probolino: a portable low-cost social device for home-based autism therapy. In: Tapus, A., André, E., Martin, J.C., Ferland, F., Ammi, M. (eds.) Social Robotics. LNCS, vol. 9388, pp. 93–102. Springer, Cham (2015)

    CrossRef  Google Scholar 

  11. Dautenhahn, K.: Methodology and themes of human-robot interaction: a growing research field. Int. J. Adv. Rob. Syst. 4, 15 (2007)

    CrossRef  Google Scholar 

  12. De Beir, A., Cao, H.-L., Esteban, P.G., Van de Perre, G., Lefeber, D., Vanderborght, B.: Enhancing emotional facial expressiveness on NAO. Int. J. Soc. Robot. 8(4), 513–521 (2016)

    CrossRef  Google Scholar 

  13. De Beir, A., Cao, H.-L., Esteban, P.G., Van de Perre, G., Vanderborght, B.: Enhancing NAO expression of emotions using pluggable eyebrows. In: New Friends International Conference (2015)

    Google Scholar 

  14. Diehl, J.J., Crowell, C.R., Villano, M., Wier, K., Tang, K., Riek, L.D.: Clinical applications of robots in autism spectrum disorder diagnosis and treatment. In: Patel, V.B., Preedy, V.R., Martin, C.R. (eds.) Comprehensive Guide to Autism, pp. 411–422. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  15. Haring, M., Bee, N., Andre, E.: Creation and evaluation of emotion expression with body movement, sound and eye color for humanoid robots. In: RO-MAN, pp. 204–209. IEEE (2011)

    Google Scholar 

  16. Kozima, H., Michalowski, M.P., Nakagawa, C.: Keepon. Int. J. Soc. Robot. 1(1), 3–18 (2009)

    CrossRef  Google Scholar 

  17. Lemaignan, S.: Boxology (2017). https://github.com/severin-lemaignan/boxology

  18. Malfaz, M., Castro-González, Á., Barber, R., Salichs, M.A.: A biologically inspired architecture for an autonomous and social robot. IEEE Trans. Auton. Ment. Dev. 3(3), 232–246 (2011)

    CrossRef  Google Scholar 

  19. Rabbitt, S.M., Kazdin, A.E., Scassellati, B.: Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clin. Psychol. Rev. 35, 35–46 (2014)

    CrossRef  Google Scholar 

  20. Riek, L.D.: Wizard of Oz studies in HRI: a systematic review and new reporting guidelines. J. Hum. Robot Interact. 1(1), 119–136 (2012)

    CrossRef  Google Scholar 

  21. Riek, L.D.: Robotics technology in mental health care. In: Luxton, D. (ed.) Artificial Intelligence in Behavioral and Mental Health Care, p. 185. Elsevier, New York (2015)

    Google Scholar 

  22. Robins, B., Dautenhahn, K., Te Boerkhorst, R., Billard, A.: Robots as assistive technology-does appearance matter? In: The 13th IEEE International Workshop on Robot and Human Interactive Communication, pp. 277–282. IEEE (2004)

    Google Scholar 

  23. Thill, S., Pop, C.A., Belpaeme, T., Ziemke, T., Vanderborght, B.: Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: challenges and outlook. Paladyn 3(4), 209–217 (2012)

    Google Scholar 

  24. Vanderborght, B., Simut, R., Saldien, J., Pop, C., Rusu, A.S., Pintea, S., Lefeber, D., David, D.O.: Using the social robot probo as a social story telling agent for children with ASD. Interact. Stud. 13(3), 348–372 (2012)

    CrossRef  Google Scholar 

  25. Vouloutsi, V., Lallée, S., Verschure, P.F.M.J.: Modulating behaviors using allostatic control. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 287–298. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39802-5_25

    CrossRef  Google Scholar 

Download references

Acknowledgement

The work leading to these results has received funding from the European Commission 7th Framework Program as a part of the project DREAM grant no. 611391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Long Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cao, HL. et al. (2017). An End-User Interface to Generate Homeostatic Behavior for NAO Robot in Robot-Assisted Social Therapies. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)