Advertisement

An End-User Interface to Generate Homeostatic Behavior for NAO Robot in Robot-Assisted Social Therapies

  • Hoang-Long Cao
  • Albert De Beir
  • Pablo Gómez Esteban
  • Ramona Simut
  • Greet Van de Perre
  • Dirk Lefeber
  • Bram Vanderborght
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10306)

Abstract

Homeostatic drive theory is a popular approach for decision-making of robot behavior in social robotic research. It is potentially to be used in social therapies. To increase the involvement of end-users in the robot’s control, we present an end-user interface allowing the therapists to generate homeostatic behavior for NAO robot in social skills training for children. We demonstrate the system by two interactions in which the robot homeostatic behavior is adapted to children’s behavior. The result shows that the system provides a practical solution for therapists to implement interaction scenarios to robot behavior.

Keywords

Homeostasis Robot behavior End-user development NAO Robot-Assisted Therapy 

Notes

Acknowledgement

The work leading to these results has received funding from the European Commission 7th Framework Program as a part of the project DREAM grant no. 611391.

References

  1. 1.
    Arkin, R.C., Fujita, M., Takagi, T., Hasegawa, R.: An ethological and emotional basis for human-robot interaction. Robot. Auton. Syst. 42(3), 191–201 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bach, J.: Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition, vol. 4. Oxford University Press, Oxford (2009)CrossRefGoogle Scholar
  3. 3.
    Barakova, E.I., Bajracharya, P., Willemsen, M., Lourens, T., Huskens, B.: Long-term LEGO therapy with humanoid robot for children with ASD. Expert Syst. 32(6), 698–709 (2015)CrossRefGoogle Scholar
  4. 4.
    Barakova, E.I., Gillesen, J.C., Huskens, B.E., Lourens, T.: End-user programming architecture facilitates the uptake of robots in social therapies. Robot. Auton. Syst. 61(7), 704–713 (2013)CrossRefGoogle Scholar
  5. 5.
    Belpaeme, T., Baxter, P.E., Read, R., Wood, R., Cuayáhuitl, H., Kiefer, B., Racioppa, S., Kruijff-Korbayová, I., Athanasopoulos, G., Enescu, V., et al.: Multimodal child-robot interaction: building social bonds. J. Hum. Robot Interact. 1(2), 33–53 (2012)Google Scholar
  6. 6.
    Berridge, K.C.: Motivation concepts in behavioral neuroscience. Physiol. Behav. 81(2), 179–209 (2004)CrossRefGoogle Scholar
  7. 7.
    Breazeal, C.: Designing Sociable Robots. MIT press, Cambridge (2004)zbMATHGoogle Scholar
  8. 8.
    Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)CrossRefGoogle Scholar
  9. 9.
    Cañamero, L., Lewis, M.: Making new “new AI” friends: designing a social robot for diabetic children from an embodied AI perspective. Int. J. Soc. Robot. 8(4), 523–537 (2016)CrossRefGoogle Scholar
  10. 10.
    Cao, H.-L., et al.: Probolino: a portable low-cost social device for home-based autism therapy. In: Tapus, A., André, E., Martin, J.C., Ferland, F., Ammi, M. (eds.) Social Robotics. LNCS, vol. 9388, pp. 93–102. Springer, Cham (2015)CrossRefGoogle Scholar
  11. 11.
    Dautenhahn, K.: Methodology and themes of human-robot interaction: a growing research field. Int. J. Adv. Rob. Syst. 4, 15 (2007)CrossRefGoogle Scholar
  12. 12.
    De Beir, A., Cao, H.-L., Esteban, P.G., Van de Perre, G., Lefeber, D., Vanderborght, B.: Enhancing emotional facial expressiveness on NAO. Int. J. Soc. Robot. 8(4), 513–521 (2016)CrossRefGoogle Scholar
  13. 13.
    De Beir, A., Cao, H.-L., Esteban, P.G., Van de Perre, G., Vanderborght, B.: Enhancing NAO expression of emotions using pluggable eyebrows. In: New Friends International Conference (2015)Google Scholar
  14. 14.
    Diehl, J.J., Crowell, C.R., Villano, M., Wier, K., Tang, K., Riek, L.D.: Clinical applications of robots in autism spectrum disorder diagnosis and treatment. In: Patel, V.B., Preedy, V.R., Martin, C.R. (eds.) Comprehensive Guide to Autism, pp. 411–422. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Haring, M., Bee, N., Andre, E.: Creation and evaluation of emotion expression with body movement, sound and eye color for humanoid robots. In: RO-MAN, pp. 204–209. IEEE (2011)Google Scholar
  16. 16.
    Kozima, H., Michalowski, M.P., Nakagawa, C.: Keepon. Int. J. Soc. Robot. 1(1), 3–18 (2009)CrossRefGoogle Scholar
  17. 17.
    Lemaignan, S.: Boxology (2017). https://github.com/severin-lemaignan/boxology
  18. 18.
    Malfaz, M., Castro-González, Á., Barber, R., Salichs, M.A.: A biologically inspired architecture for an autonomous and social robot. IEEE Trans. Auton. Ment. Dev. 3(3), 232–246 (2011)CrossRefGoogle Scholar
  19. 19.
    Rabbitt, S.M., Kazdin, A.E., Scassellati, B.: Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clin. Psychol. Rev. 35, 35–46 (2014)CrossRefGoogle Scholar
  20. 20.
    Riek, L.D.: Wizard of Oz studies in HRI: a systematic review and new reporting guidelines. J. Hum. Robot Interact. 1(1), 119–136 (2012)CrossRefGoogle Scholar
  21. 21.
    Riek, L.D.: Robotics technology in mental health care. In: Luxton, D. (ed.) Artificial Intelligence in Behavioral and Mental Health Care, p. 185. Elsevier, New York (2015)Google Scholar
  22. 22.
    Robins, B., Dautenhahn, K., Te Boerkhorst, R., Billard, A.: Robots as assistive technology-does appearance matter? In: The 13th IEEE International Workshop on Robot and Human Interactive Communication, pp. 277–282. IEEE (2004)Google Scholar
  23. 23.
    Thill, S., Pop, C.A., Belpaeme, T., Ziemke, T., Vanderborght, B.: Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: challenges and outlook. Paladyn 3(4), 209–217 (2012)Google Scholar
  24. 24.
    Vanderborght, B., Simut, R., Saldien, J., Pop, C., Rusu, A.S., Pintea, S., Lefeber, D., David, D.O.: Using the social robot probo as a social story telling agent for children with ASD. Interact. Stud. 13(3), 348–372 (2012)CrossRefGoogle Scholar
  25. 25.
    Vouloutsi, V., Lallée, S., Verschure, P.F.M.J.: Modulating behaviors using allostatic control. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 287–298. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39802-5_25 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hoang-Long Cao
    • 1
    • 3
  • Albert De Beir
    • 1
    • 3
  • Pablo Gómez Esteban
    • 1
    • 3
  • Ramona Simut
    • 2
  • Greet Van de Perre
    • 1
    • 3
  • Dirk Lefeber
    • 1
    • 3
  • Bram Vanderborght
    • 1
    • 3
  1. 1.Robotics & Multibody Mechanics Research GroupVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Clinical and Life Span Psychology GroupVrije Universiteit BrusselBrusselsBelgium
  3. 3.Flanders Make, Strategic Research Centre Manufacturing IndustryLommelBelgium

Personalised recommendations