Skip to main content

Automatic Learning of Gait Signatures for People Identification

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

Abstract

This work targets people identification in video based on the way they walk (i.e. gait). While classical methods typically derive gait signatures from sequences of binary silhouettes, in this work we explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (i.e. optical flow components). We carry out a thorough experimental evaluation of the proposed CNN architecture on the challenging TUM-GAID dataset. The experimental results indicate that using spatio-temporal cuboids of optical flow as input data for CNN allows to obtain state-of-the-art results on the gait task, both for identification and gender recognition, with an image resolution eight times lower than the previously reported results (i.e. \(80\times 60\) pixels).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that TUM-GAID distinguishes between training/test subjects and training/test sequences. Test sequences are never used for training or validation of the model.

References

  1. Alotaibi, M., Mahmood, A.: Improved gait recognition based on specialized deep convolutional neural networks. In: 2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–7, October 2015

    Google Scholar 

  2. Barnich, O., Droogenbroeck, M.V.: Frontal-view gait recognition by intra- and inter-frame rectangle size distribution. Pattern Recogn. Lett. 30(10), 893–901 (2009)

    Article  Google Scholar 

  3. Castro, F.M., Marín-Jiménez, M.J., Guil, N.: Empirical study of audio-visual features fusion for gait recognition. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 727–739. Springer, Cham (2015). doi:10.1007/978-3-319-23192-1_61

    Chapter  Google Scholar 

  4. Castro, F.M., Marín-Jiménez, M., Guil Mata, N., Muñoz Salinas, R.: Fisher motion descriptor for multiview gait recognition. Int. J. Patt. Recogn. Artif. Intell. 31(1) (2017)

    Google Scholar 

  5. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.: cudnn: Efficient primitives for deep learning. CoRR abs/1410.0759 (2014)

    Google Scholar 

  6. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). doi:10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  7. Gálai, B., Benedek, C.: Feature selection for lidar-based gait recognition. In: 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pp. 1–5 (2015)

    Google Scholar 

  8. Guan, Y., Li, C.T.: A robust speed-invariant gait recognition system for walker and runner identification. In: International Conference on Biometrics (ICB), pp. 1–8 (2013)

    Google Scholar 

  9. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE PAMI 28(2), 316–322 (2006)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778, June 2016

    Google Scholar 

  11. Hofmann, M., Geiger, J., Bachmann, S., Schuller, B., Rigoll, G.: The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits. J. Vis. Commun. Image Represent. 25(1), 195–206 (2014)

    Article  Google Scholar 

  12. Hossain, E., Chetty, G.: Multimodal feature learning for gait biometric based human identity recognition. In: Neural Information Processing, pp. 721–728 (2013)

    Google Scholar 

  13. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(3), 334–352 (2004)

    Article  Google Scholar 

  14. Ji, S., Xu, W., Yang, M., Yu, K.: 3D Convolutional Neural Networks for human action recognition. IEEE PAMI 35(1), 221–231 (2013)

    Article  Google Scholar 

  15. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer, New York (2002)

    Chapter  Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568–576 (2014)

    Google Scholar 

  18. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human action classes from videos in the wild. In: CRCV-TR-12-01, November 2012

    Google Scholar 

  19. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV. IEEE (2015)

    Google Scholar 

  20. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. In: Proceedings of the ACM International Conference on Multimedia (2015)

    Google Scholar 

  21. Whytock, T., Belyaev, A., Robertson, N.: Dynamic distance-based shape features for gait recognition. J. Math. Imaging Vis. 50(3), 314–326 (2014)

    Article  MATH  Google Scholar 

  22. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE PAMI PP(99) (2016)

    Google Scholar 

  23. Wu, Z., Huang, Y., Wang, L.: Learning representative deep features for image set analysis. IEEE Trans. Multimedia 17(11), 1960–1968 (2015)

    Article  Google Scholar 

  24. Zeng, W., Wang, C., Yang, F.: Silhouette-based gait recognition via deterministic learning. Pattern Recogn. 47(11), 3568–3584 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Manuel Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Castro, F.M., Marín-Jiménez, M.J., Guil, N., Pérez de la Blanca, N. (2017). Automatic Learning of Gait Signatures for People Identification. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics