Skip to main content

Recognizing Pedestrian Direction Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

Abstract

Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads and events where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in commercial centres or events such as demonstrations, are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as Convolutional Neural Networks (CNN) to achieve a good and reliable detection of pedestrians moving in a particular direction. We present a novel input representation that leverages current pedestrian detection techniques to generate a sum of subtracted frames, which are used as an input for the proposed CNN. Moreover, we have also created a new dataset for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.rovit.ua.es/dataset/pedirecog/.

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, D.C., USA, pp. 886–893 (2005)

    Google Scholar 

  2. Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian detection. In: CVPR, pp. 1030–1037 (2010)

    Google Scholar 

  3. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 31, 2179–2195 (2009)

    Article  Google Scholar 

  4. Benenson, R., Omran, M., Hosang, J., Schiele, B.: Ten years of pedestrian detection, what have we learned? In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 613–627. Springer, Cham (2015). doi:10.1007/978-3-319-16181-5_47

    Google Scholar 

  5. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

    Article  Google Scholar 

  6. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  7. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc., New York (2012)

    Google Scholar 

  9. Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  10. Enzweiler, M., Gavrila, D.M.: Integrated pedestrian classification and orientation estimation. In: CVPR, pp. 982–989. IEEE Computer Society (2010)

    Google Scholar 

  11. Gandhi, T., Trivedi, M.M.: Image based estimation of pedestrian orientation for improving path prediction. In: IEEE Intelligent Vehicles Symposium (2008)

    Google Scholar 

  12. Mogelmose, A., Trivedi, M.M., Moeslund, T.B. Trajectory analysis, prediction for improved pedestrian safety: integrated framework and evaluations. In: Intelligent Vehicles Symposium, pp. 330–335. IEEE (2015)

    Google Scholar 

  13. Fugger, T., Randles, B., Stein, A., Whiting, W., Gallagher, B.: Analysis of pedestrian gait and perception-reaction at signal-controlled crosswalk intersections. Transportation Research Record 1705, 20–25 (2000)

    Article  Google Scholar 

  14. Goldhammer, M., Hubert, A., Köhler, S., Zindler, K., Brunsmann, U., Doll, K., Sick, B.: Analysis on termination of pedestrians’ gait at urban intersections. In: IEEE 17th International Conference on Intelligent Transportation Systems, pp. 1758–1763 (2014)

    Google Scholar 

  15. Schneider, N., Gavrila, D.M.: Pedestrian path prediction with recursive bayesian filters: a comparative study. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 174–183. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_18

    Chapter  Google Scholar 

  16. Keller, C.G., Gavrila, D.M.: Will the pedestrian cross? A study on pedestrian path prediction. IEEE Trans. Intell. Transp. Syst. 15(2), 494–506 (2014)

    Article  Google Scholar 

  17. Koehler, S., Goldhammer, M., Bauer, S., Zecha, S., Doll, K., Brunsmann, U., Dietmayer, K.: Stationary detection of the pedestrian’s intention at intersections. IEEE Intell. Transp. Syst. Mag. 5(4), 87–99 (2013)

    Article  Google Scholar 

  18. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). doi:10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  19. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580 (2012)

    Google Scholar 

  20. Nesterov, Y.: A method for solving a convex programming problem with rate of convergence \({O}(1/k^2)\). Sov. Math. Dokl. 269(3), 543–547 (1983)

    Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (2010)

    Google Scholar 

Download references

Acknowledgment

This work has been funded by the Spanish Government TIN2016-76515-R grant for the COMBAHO project, supported with Feder funds. Experiments were made possible by a generous hardware donation from NVIDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Cazorla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dominguez-Sanchez, A., Orts-Escolano, S., Cazorla, M. (2017). Recognizing Pedestrian Direction Using Convolutional Neural Networks. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics