Skip to main content

Predictive Procurement Insights: B2B Business Network Contribution to Predictive Insights in the Procurement Process Following a Design Science Research Approach

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10243)

Abstract

Significant recent developments in the domain of big data analytics provide the basis for leveraging predictive procurement insights in the procurement process. Following the path of other business domains, B2B business networks now have the potential to fill the gap of providing sufficient data for predictive technologies to be applied to the procurement domain, opening the door for significant efficiency gains. Based on the conceptual framework of the procurement process the methodology of design science research is applied to analyze prototype dashboards that leverage available data from B2B business networks.

Keywords

  • Predictive analytics
  • E-procurement
  • Electronic marketplace
  • Design science research

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59144-5_16
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-59144-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Agrawal, A., De Meyer, A., Van Wassenhove, L.: Managing value in supply chains: case studies on the sourcing hub concept. Calif. Manag. Rev. 56(2), 23–54 (2014)

    CrossRef  Google Scholar 

  2. Allmendinger, G., Lombreglia, R.: Four strategies for the age of smart services. Harvard Bus. Rev. 83(10), 131–138 (2005)

    Google Scholar 

  3. Bell, J.: Machine Learning: Hands-On for Developers and Technical Professionals. Wiley, Indianapolis (2015)

    Google Scholar 

  4. Chiu, C., Ku, Y., Lie, T., Chen, Y.: Internet auction fraud detection using social network analysis and classification tree approaches. Int. J. Electron. Commer. 15(3), 123–147 (2011)

    CrossRef  Google Scholar 

  5. Cross, R., Gray, P.: Where has the time gone? Addressing collaboration overload in a networked economy. Calif. Manag. Rev. 56(1), 50–66 (2013)

    CrossRef  Google Scholar 

  6. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)

    CrossRef  Google Scholar 

  7. Eisenmann, T., Parker, G., Van Alstyne, M.: Strategies for two-sided markets. Harvard Bus. Rev. 84(10), 92–101 (2006)

    Google Scholar 

  8. Folmer, E., Luttighuis, O.P., van Hillegersberg, J.: Do semantic standards lack quality? A survey among 34 semantic standards. Electron. Markets 21(2), 99–111 (2011)

    CrossRef  Google Scholar 

  9. Galanxh, H., Nah, F.: Privacy issues in the era of ubiquitous commerce. Electron. Markets 16(3), 222–232 (2006)

    CrossRef  Google Scholar 

  10. Gregor, S., Hevner, A.: Positioning design science research for maximum impact. MIS Q. 37(2), 337–355 (2013)

    Google Scholar 

  11. Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)

    Google Scholar 

  12. Johnson, P., Flynn, A.: Purchasing and Supply Management. McGraw-Hill, New York (2015)

    Google Scholar 

  13. Kim, W., Mauborgne, R.: Blue Ocean Strategy: How to Create Uncontested Market Space and Make the Competition Irrelevant. Harvard Business School Press, Boston (2007)

    Google Scholar 

  14. Kumar, V., Venkatesan, R., Reinartz, W.: Knowing what to sell, when, and to whom. Harvard Bus. Rev. 84(3), 131–150 (2006)

    Google Scholar 

  15. Lee, J., Son, J., Suh, K.: Can market knowledge from intermediaries increase sellers’ performance in on-line marketplaces? Int. J. Electron. Commer. 14(4), 69–102 (2010)

    CrossRef  Google Scholar 

  16. Lindemann, M., Schmid, B.: Framework for specifying, building, and operating electronic markets. Int. J. Electron. Commer. 3(2), 7–21 (1998)

    CrossRef  Google Scholar 

  17. Mahadevan, B.: Making sense of emerging market structures in B2B E-Commerce. Calif. Manag. Rev. 46(1), 86–100 (2003)

    CrossRef  MathSciNet  Google Scholar 

  18. Maisel, L., Cokins, G.: Predictive Business Analytics: Forward Looking Capabilities to Improve Business Performance. Wiley, Hoboken (2014)

    Google Scholar 

  19. March, S., Storey, V.: Design science in the information systems. MIS Q. 32(4), 725–730 (2008)

    Google Scholar 

  20. Merrick, J., Soyer, R., Mazzuchi, T.: Are maintenance practices for railroad tracks effective? J. Am. Stat. Assoc. 100(469), 17–25 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Minelli, M., Chambers, M., Dhiraj, A.: Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. Wiley, Hoboken (2013)

    CrossRef  Google Scholar 

  22. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2013)

    MATH  Google Scholar 

  23. Nichols, W.: Advertising analytics 2.0. Harvard Bus. Rev. 91(3), 60–68 (2013)

    Google Scholar 

  24. OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data (2013). http://oe.cd/privacy. Accessed 04 Jan 2016

  25. Ohm, P.: Changing the rules: general principles for data use and analysis. In: Lane, J. (ed.) Privacy, Big Data, and the Public Good: Frameworks for Engagement. Cambridge University Press, New York (2014)

    Google Scholar 

  26. Olson, R.: How machines learn (and you win). Harvard Bus. Rev. 93(11), 36–40 (2015)

    Google Scholar 

  27. Ordanini, A.: The effects of participation on B2B exchanges: a resource based view. Calif. Manag. Rev. 47(2), 97–113 (2005)

    CrossRef  Google Scholar 

  28. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

    CrossRef  Google Scholar 

  29. Porter, M., Heppelmann, J.: How smart, connected products are transforming companies. Harvard Bus. Rev. 93(10), 96–114 (2015)

    Google Scholar 

  30. Rabinovich, E., Knemeyer, M.: Logistic service providers in internet supply chains. Calif. Manag. Rev. 48(4), 84–108 (2006)

    CrossRef  Google Scholar 

  31. Sharda, R.: Business Intelligence and Analytics: Systems for Decision Support. Pearson, Boston (2015)

    Google Scholar 

  32. Siegel, E.: Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, Hoboken (2013)

    Google Scholar 

  33. Solove, D.: A taxonomy of privacy. Univ. Pennsylvania Law Rev. 154(3), 477–564 (2006)

    CrossRef  Google Scholar 

  34. Spiekermann, S., Acquisti, A., Böhme, R., Hui, K.: The challenges of personal data markets and privacy. Electron. Markets 25(2), 161–167 (2015)

    CrossRef  Google Scholar 

  35. Vaishnavi, V., Kuechler, W.: Design Science Research Methods and Patterns: Innovating Information and Communication Technology. Auerbach, New York (2007)

    CrossRef  Google Scholar 

  36. Williamson, O.: The Economic Institutions of Capitalism. Free Press, New York (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gruenen, J., Bode, C., Hoehle, H. (2017). Predictive Procurement Insights: B2B Business Network Contribution to Predictive Insights in the Procurement Process Following a Design Science Research Approach. In: Maedche, A., vom Brocke, J., Hevner, A. (eds) Designing the Digital Transformation. DESRIST 2017. Lecture Notes in Computer Science(), vol 10243. Springer, Cham. https://doi.org/10.1007/978-3-319-59144-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59144-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59143-8

  • Online ISBN: 978-3-319-59144-5

  • eBook Packages: Computer ScienceComputer Science (R0)