Predictive Procurement Insights: B2B Business Network Contribution to Predictive Insights in the Procurement Process Following a Design Science Research Approach

  • Jan Gruenen
  • Christoph BodeEmail author
  • Hartmut Hoehle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10243)


Significant recent developments in the domain of big data analytics provide the basis for leveraging predictive procurement insights in the procurement process. Following the path of other business domains, B2B business networks now have the potential to fill the gap of providing sufficient data for predictive technologies to be applied to the procurement domain, opening the door for significant efficiency gains. Based on the conceptual framework of the procurement process the methodology of design science research is applied to analyze prototype dashboards that leverage available data from B2B business networks.


Predictive analytics E-procurement Electronic marketplace Design science research 


  1. 1.
    Agrawal, A., De Meyer, A., Van Wassenhove, L.: Managing value in supply chains: case studies on the sourcing hub concept. Calif. Manag. Rev. 56(2), 23–54 (2014)CrossRefGoogle Scholar
  2. 2.
    Allmendinger, G., Lombreglia, R.: Four strategies for the age of smart services. Harvard Bus. Rev. 83(10), 131–138 (2005)Google Scholar
  3. 3.
    Bell, J.: Machine Learning: Hands-On for Developers and Technical Professionals. Wiley, Indianapolis (2015)Google Scholar
  4. 4.
    Chiu, C., Ku, Y., Lie, T., Chen, Y.: Internet auction fraud detection using social network analysis and classification tree approaches. Int. J. Electron. Commer. 15(3), 123–147 (2011)CrossRefGoogle Scholar
  5. 5.
    Cross, R., Gray, P.: Where has the time gone? Addressing collaboration overload in a networked economy. Calif. Manag. Rev. 56(1), 50–66 (2013)CrossRefGoogle Scholar
  6. 6.
    Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)CrossRefGoogle Scholar
  7. 7.
    Eisenmann, T., Parker, G., Van Alstyne, M.: Strategies for two-sided markets. Harvard Bus. Rev. 84(10), 92–101 (2006)Google Scholar
  8. 8.
    Folmer, E., Luttighuis, O.P., van Hillegersberg, J.: Do semantic standards lack quality? A survey among 34 semantic standards. Electron. Markets 21(2), 99–111 (2011)CrossRefGoogle Scholar
  9. 9.
    Galanxh, H., Nah, F.: Privacy issues in the era of ubiquitous commerce. Electron. Markets 16(3), 222–232 (2006)CrossRefGoogle Scholar
  10. 10.
    Gregor, S., Hevner, A.: Positioning design science research for maximum impact. MIS Q. 37(2), 337–355 (2013)Google Scholar
  11. 11.
    Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)Google Scholar
  12. 12.
    Johnson, P., Flynn, A.: Purchasing and Supply Management. McGraw-Hill, New York (2015)Google Scholar
  13. 13.
    Kim, W., Mauborgne, R.: Blue Ocean Strategy: How to Create Uncontested Market Space and Make the Competition Irrelevant. Harvard Business School Press, Boston (2007)Google Scholar
  14. 14.
    Kumar, V., Venkatesan, R., Reinartz, W.: Knowing what to sell, when, and to whom. Harvard Bus. Rev. 84(3), 131–150 (2006)Google Scholar
  15. 15.
    Lee, J., Son, J., Suh, K.: Can market knowledge from intermediaries increase sellers’ performance in on-line marketplaces? Int. J. Electron. Commer. 14(4), 69–102 (2010)CrossRefGoogle Scholar
  16. 16.
    Lindemann, M., Schmid, B.: Framework for specifying, building, and operating electronic markets. Int. J. Electron. Commer. 3(2), 7–21 (1998)CrossRefGoogle Scholar
  17. 17.
    Mahadevan, B.: Making sense of emerging market structures in B2B E-Commerce. Calif. Manag. Rev. 46(1), 86–100 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maisel, L., Cokins, G.: Predictive Business Analytics: Forward Looking Capabilities to Improve Business Performance. Wiley, Hoboken (2014)Google Scholar
  19. 19.
    March, S., Storey, V.: Design science in the information systems. MIS Q. 32(4), 725–730 (2008)Google Scholar
  20. 20.
    Merrick, J., Soyer, R., Mazzuchi, T.: Are maintenance practices for railroad tracks effective? J. Am. Stat. Assoc. 100(469), 17–25 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Minelli, M., Chambers, M., Dhiraj, A.: Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  22. 22.
    Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2013)zbMATHGoogle Scholar
  23. 23.
    Nichols, W.: Advertising analytics 2.0. Harvard Bus. Rev. 91(3), 60–68 (2013)Google Scholar
  24. 24.
    OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data (2013). Accessed 04 Jan 2016
  25. 25.
    Ohm, P.: Changing the rules: general principles for data use and analysis. In: Lane, J. (ed.) Privacy, Big Data, and the Public Good: Frameworks for Engagement. Cambridge University Press, New York (2014)Google Scholar
  26. 26.
    Olson, R.: How machines learn (and you win). Harvard Bus. Rev. 93(11), 36–40 (2015)Google Scholar
  27. 27.
    Ordanini, A.: The effects of participation on B2B exchanges: a resource based view. Calif. Manag. Rev. 47(2), 97–113 (2005)CrossRefGoogle Scholar
  28. 28.
    Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)CrossRefGoogle Scholar
  29. 29.
    Porter, M., Heppelmann, J.: How smart, connected products are transforming companies. Harvard Bus. Rev. 93(10), 96–114 (2015)Google Scholar
  30. 30.
    Rabinovich, E., Knemeyer, M.: Logistic service providers in internet supply chains. Calif. Manag. Rev. 48(4), 84–108 (2006)CrossRefGoogle Scholar
  31. 31.
    Sharda, R.: Business Intelligence and Analytics: Systems for Decision Support. Pearson, Boston (2015)Google Scholar
  32. 32.
    Siegel, E.: Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, Hoboken (2013)Google Scholar
  33. 33.
    Solove, D.: A taxonomy of privacy. Univ. Pennsylvania Law Rev. 154(3), 477–564 (2006)CrossRefGoogle Scholar
  34. 34.
    Spiekermann, S., Acquisti, A., Böhme, R., Hui, K.: The challenges of personal data markets and privacy. Electron. Markets 25(2), 161–167 (2015)CrossRefGoogle Scholar
  35. 35.
    Vaishnavi, V., Kuechler, W.: Design Science Research Methods and Patterns: Innovating Information and Communication Technology. Auerbach, New York (2007)CrossRefGoogle Scholar
  36. 36.
    Williamson, O.: The Economic Institutions of Capitalism. Free Press, New York (1985)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Business SchoolUniversity of MannheimMannheimGermany
  2. 2.Sam M. Walton College of BusinessUniversity of ArkansasFayettevilleUSA

Personalised recommendations