Skip to main content

On the Bioadhesive Properties of Silicone-Based Coatings by Incorporation of Block Copolymers

  • 1336 Accesses

Part of the Biologically-Inspired Systems book series (BISY,volume 9)

Abstract

This chapter discusses the applicability of different AFM -based techniques with force sensitivity of a few pN for mapping the nanostructure and quantifying the nanoscale mechanical properties of the surface of complex polymer coatings based on silicone oligomers in order to use them as bioadhesives . The AFM modes used are Peak Force Tapping and Contact with Si3N4 and chemically-modified (CH3-terminated alkanethiols, COOH-terminated alkanethiols) probe tips both in air and aqueous media. Studying nanostructured films of block copolymers containing a polydimethylsiloxane (PDMS) segment and a segment of poly(acrylic acid) (PAA ) or poly[(2-dimethylamino) ethyl methacrylate] (PDMAEMA ) led to a better understanding of the interaction of the polymer chains with solvent molecules or chains of another polymer in the self-assembly process. Stiffness mapping by PFT-AFM has allowed identifying the difference in mechanical properties between two polymer constituting blocks. The effect of copolymer concentration and solvents on the surface morphologies was also studied in details. In more complicated situation, the copolymers were used to modify the surface properties of elastomeric PDMS coatings and the PDMS surface properties before and after immersion in water were also evaluated. AFM -based nano-mechanical testing showed that the surface reorganization significantly affects the morphology and the adhesion properties of the silicone coatings. The observed broadening of the adhesion distribution is believed due to the different interactions between hydrophobic /hydrophilic surfaces and the silicon probe tip in aqueous solution. Finally, the nature of the tip-surface interaction forces was clarified by employing functionalized AFM tips. The adhesion force mapping with hydrophobic tips (CH3-terminated alkanethiols) for 10 wt% PDMS-b-PDMAEMA-filled coatings before and after immersion in water showed larger forces for the coatings before immersion, thus confirming that the interaction forces between two hydrophobic surfaces are stronger than those between one hydrophobic and one hydrophilic surface. In addition, the interaction forces between amino groups of the PDMAEMA and COOH-terminated tips were investigated as a function of the pH and the ionic strength of aqueous media. Progressive stretching and continuous desorption of individual copolymer chains from the tip surface were recorded. The dynamic changes of polymer desorption were also reported by recording force curves at various pulling speeds and contact times. Furthermore, the adhesion force maps recorded at high ionic strength (in 0.1 M NaCl solution) showed a major decrease in the adhesion frequency and plateau forces, indicating a loss of polyelectrolyte properties. Bio-adhesion experiments with mussels were then performed on the different types of substrates—unfilled PDMS coatings and PDMS coatings filled with block copolymers. The results revealed that these organisms attach preferably to block copolymer-filled coatings after immersion due concomitant molecular reorganization at the top-surface of the copolymer-filled coatings. These observations provided evidence for the significant role played by the selected amphiphilic block copolymers to promote bio-adhesion on surface-treated silicone coatings.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59114-8_15
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-59114-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9
Fig. 15.10
Fig. 15.11
Fig. 15.12
Fig. 15.13
Fig. 15.14
Fig. 15.15
Fig. 15.16
Fig. 15.17
Fig. 15.18
Fig. 15.19
Fig. 15.20
Fig. 15.21
Fig. 15.22
Fig. 15.23
Fig. 15.24
Fig. 15.25

References

  1. S.J. Holder, N.A.J.M. Sommerdijk, New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polym. Chem. 2, 1018–1028 (2011)

    CrossRef  Google Scholar 

  2. L. Zhang, A. Eisenberg, Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728–1731 (1995)

    CrossRef  Google Scholar 

  3. L. Zhang, A. Eisenberg, Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc. 118, 3168–3181 (1996)

    CrossRef  Google Scholar 

  4. J.-C. Huang, Fabrication of a gecko seta-like structure using polydimethylsiloxane. Int. J. Adhes. Adhes. 36, 25–31 (2012)

    CrossRef  Google Scholar 

  5. D. Xiao, H. Zhang, M. Wirth, Chemical modification of the surface of poly(dimethylsiloxane) by atom-transfer radical polymerization of acrylamide. Langmuir 18, 9971–9976 (2002)

    CrossRef  Google Scholar 

  6. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000)

    CrossRef  Google Scholar 

  7. X. Ren, M. Bachman, C. Sims, G.P. Li, N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J. Chromatogr. B Biomed. Sci. Appl. 762, 117–125 (2001)

    CrossRef  Google Scholar 

  8. J. Roth, V. Albrecht, M. Nitschke, C. Bellmann, F. Simon, S. Zschoche, S. Michel, C. Luhmann, K. Grundke, B. Voit, Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24, 12603–12611 (2008)

    CrossRef  Google Scholar 

  9. D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuator B Chem. 114, 170–172 (2006)

    CrossRef  Google Scholar 

  10. D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng. 83, 1277–1279 (2006)

    CrossRef  Google Scholar 

  11. R Kalinova, Imparting (bio)adhesive properties to silicone coatings: the effect of functionalized diblock copolymers. Ph.D. Thesis, University of Mons (2013)

    Google Scholar 

  12. C. Gerber, H.P. Lang, How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006)

    CrossRef  Google Scholar 

  13. A. Engel, D.J. Muller, Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Mol. Biol. 7, 715–718 (2000)

    CrossRef  Google Scholar 

  14. J.K.H. Hörber, M.J. Miles, Scanning probe evolution in biology. Science 302, 1002–1005 (2003)

    CrossRef  Google Scholar 

  15. G. Kada, F. Kienberger, P. Hinterdorfer, Atomic force microscopy in bionanotechnology. Nano Today 3, 12–19 (2008)

    CrossRef  Google Scholar 

  16. M. Chyasnavichyus, S.L. Young, V. Tsukruk, Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy. Jpn. J. Appl. Phys. 54, 08LA02-1-13 (2015)

    CrossRef  Google Scholar 

  17. A. Noy, D.V. Vezenov, C.M. Lieber, Chemical force microscopy. Annu. Rev. Mater. Res. 27, 381–421 (1997)

    Google Scholar 

  18. B. Bhushan, O. Marti, in Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Heidelberg, 2010), pp. 573–617

    CrossRef  Google Scholar 

  19. J Melcher, D Kiracofe, S Hu, A Raman, VEDA 2.0 (Virtual Environment for Dynamic AFM) (2008), http://nanohub.org/resources/adac. doi:10.4231/D38W3821D. Accessed 09 May 2016

  20. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–325 (1975)

    CrossRef  Google Scholar 

  21. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    CrossRef  Google Scholar 

  22. S.A. Chizhik, Z. Huang, V.V. Gorbunov, N.K. Myshkin, V.V. Tsukruk, Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy. Langmuir 14, 2606–2609 (1998)

    CrossRef  Google Scholar 

  23. K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, J. Greve, Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy. Appl. Phys. Lett. 65, 1195–1197 (1994)

    CrossRef  Google Scholar 

  24. S. Seghezza, S. Dante, A. Diaspro, C. Canale, High resolution nanomechanical characterization of multi-domain model membranes by fast force volume. J. Mol. Recognit. 28, 742–750 (2015)

    CrossRef  Google Scholar 

  25. Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692 (1993)

    Google Scholar 

  26. P. Leclère, R. Lazzaroni, J.L. Brédas, J.M. Yu, P. Dubois, R. Jérôme, Microdomain morphology analysis of block copolymers by atomic force microscopy with phase detection imaging. Langmuir 12, 4317–4320 (1996)

    CrossRef  Google Scholar 

  27. P. Maivald, H. Butt, S. Gould, C. Prater, B. Drake, J. Gurley, V. Elings, P. Hansma, Using force modulation to image surface elasticities with the atomic force microscopy. Nanotechnology 2, 103–106 (1991)

    CrossRef  Google Scholar 

  28. G. Stan, S.W. King, R.F. Cook, Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy. Nanotechnology 23, 215703 (2012)

    CrossRef  Google Scholar 

  29. D.C. Hurley, M. Kopycinska-Müller, D. Julthongpiput, M.J. Fasolka, D.C. Hurley, M. Kopycinska-Müller, D. Julthongpiput, M.J. Fasolka, Appl. Surf. Sci. 253, 1274–1281 (2006)

    CrossRef  Google Scholar 

  30. U. Rabe, S. Amelio, M. Kopycinska, S. Hirsekorn, M. Kempf, M. Göken, W. Arnold, Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65–67 (2002)

    CrossRef  Google Scholar 

  31. R. Arinéro, G. Lévêque, P. Girard, J.Y. Ferrandis, Image processing for resonance frequency mapping in atomic force modulation microscopy. Rev. Sci. Instrum. 78, 023703-1–023703-6 (2007)

    CrossRef  Google Scholar 

  32. B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch, Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007)

    CrossRef  Google Scholar 

  33. F. Dinelli, H. Assender, N. Takeda, G. Briggs, O. Kolosov, Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surf. Interface Anal. 27, 562–567 (1999)

    CrossRef  Google Scholar 

  34. A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas. Sci. Technol. 8, 1333–1338 (1997)

    CrossRef  Google Scholar 

  35. T.J. Young, M.A. Monclus, T.L. Burnett, W.R. Broughton, S.L. Ogin, P.A. Smith, The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 22, 125703 (2011)

    CrossRef  Google Scholar 

  36. G. Stan, R.S. Gates, Intermittent contact resonance atomic force microscopy. Nanotechnology 25(24), 245702 (2014)

    CrossRef  Google Scholar 

  37. M.J. Holzwarth, A.M. Gigler, O. Marti, Digital pulsed force mode—determining local mechanical properties of HeLa cells. Imaging Microsc. 8, 37–38 (2006)

    CrossRef  Google Scholar 

  38. S.N. Magonov, Expanding Atomic Force Microscopy with HybriD Mode Imaging. NT-MDT Application Note 087 (2014)

    Google Scholar 

  39. C. Braunsmann, J. Seifert, J. Rheinlaender, T.E. Schäffer, High-speed force mapping on living cells with a small cantilever atomic force microscope. Rev. Sci. Instrum. 85, 073703 (2014)

    CrossRef  Google Scholar 

  40. B. Choi, Park PinPoint™ Mode for Cell Biology (Private Communication, Boston, MA, 2015)

    Google Scholar 

  41. I. Sokolov, Ringing Mode TM (Private Communication, Boston, MA, 2015)

    Google Scholar 

  42. O. Sahin, S.N. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscopy tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007)

    CrossRef  Google Scholar 

  43. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007)

    CrossRef  Google Scholar 

  44. D. Platz, E.A. Tholen, D. Pessen, D.B. Haviland, Intermodulation atomic force microscopy. Appl. Phys. Lett. 92, 153106 (2008)

    CrossRef  Google Scholar 

  45. P. Vitry, E. Bourillot, C. Plassard, Y. Lacroute, L. Tetard, E. Lesniewska, Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 105, 053110 (2014)

    CrossRef  Google Scholar 

  46. A. Belianinov, S.V. Kalinin, S. Jesse, Complete information acquisition in dynamic force microscopy. Nat. Commun. 6, 6550 (2015)

    CrossRef  Google Scholar 

  47. C. Chen, J. Wang, Z. Chen, Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG. Langmuir 20(23), 10186–10193 (2004)

    CrossRef  Google Scholar 

  48. A. Beigbeder, R. Mincheva, M. Claes, P. Brocorens, R. Lazzaroni, P. Dubois, On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. J. Nanostruct. Polym. Nanocompos. 5, 37–43 (2009)

    Google Scholar 

  49. R. Kalinova, R. Mincheva, P. Dubois, Imparting adhesion property to silicone materials: challenges and solutions. Rev. Adhes. Adhes. 2, 30–55 (2014)

    CrossRef  Google Scholar 

  50. I. Marabotti, A. Morelli, L.M. Orsini, E. Martinelli, G. Galli, E. Chiellini, E.M. Lien, M.E. Pettitt, M.E. Callow, J.A. Callow, S.L. Conlan, R.J. Mutton, A.S. Clare, A. Kocijan, C. Donik, M. Jenko, Fluorinated/siloxane copolymer blends for fouling release: chemical characterisation and biological evaluation with algae and barnacles. Biofouling 25, 481–493 (2009)

    CrossRef  Google Scholar 

  51. E. Martinelli, M.K. Sarvothaman, G. Galli, M.E. Pettitt, M.E. Callow, J.A. Callow, S.L. Conlan, A.S. Clare, A.B. Sugiharto, C. Davies, D. Williams, Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. Biofouling 28, 571–582 (2012)

    CrossRef  Google Scholar 

  52. H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007)

    CrossRef  Google Scholar 

  53. J.H. Waite, Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)

    CrossRef  Google Scholar 

  54. J.H. Waite, Adhesion a la moule. Integr. Comp. Biol. 42, 1172–1180 (2002)

    CrossRef  Google Scholar 

  55. L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980)

    CrossRef  Google Scholar 

  56. J.H. Hildebrand, R.L. Scott, The Solubility of Non-electrolytes, 3rd edn. (Reinhold, New York, 1975)

    Google Scholar 

  57. Z. Tuzar, P. Kratochvíl, Block and graft copolymer micelles in solution. Adv. Colloid Interface Sci. 6, 201–232 (1976)

    CrossRef  Google Scholar 

  58. J.H. Hildebrand, R.L. Scott, ReguZar Solutions (Prentice-Hall, Englewood Cliffs, 1962)

    Google Scholar 

  59. J.H. Hildebrand, J.M. Prausnitz, R.L. Scott, Regular and Related Solutions (van Nostrand-Reinhold, Princeton, NJ, 1970)

    Google Scholar 

  60. C. Price, in Developments in Block Copolymers, ed. by I. Goodman (Applied Science Publishers, Barking, 1982), pp. 39–79

    Google Scholar 

  61. J.G. Selb, Y. Gallot, in Developments in Block Copolymers, vol. 2, ed. by I. Goodman (Applied Science Publishers, London, 1985), p. 327

    Google Scholar 

  62. Z. Tuzar, P. Kratochvil, in Surface and Colloid Science, vol. 15, ed. by E. Matijevic (Plenum Press, New York, 1993), pp. 1–83

    Google Scholar 

  63. O. Dos Santos Ferreira, E. Gelinck, D. de Graaf, H. Fischer, Adhesion experiments using an AFM—parameters of influence. Appl. Surf. Sci. 257, 48–55 (2010)

    CrossRef  Google Scholar 

  64. R. Kalinova, C. Ngo, R. Mincheva, R. Lazzaroni, P. Leclère, P. Dubois, From cylindrical to spherical nanosized micelles by self-assembly of poly(dimethylsiloxane)-b-poly(acrylicacid) diblock copolymers. Polym. Bull. (2015). doi:10.1007/s00289-016-1598-2

    Google Scholar 

  65. M.-E. Vlachopoulou, A. Tserepi, K. Beltsios, G. Boulousis, E. Gogolides, Nanostructuring of PDMS surfaces: dependence on casting solvents. Microelectron. Eng. 84, 1476–1479 (2007)

    CrossRef  Google Scholar 

  66. L.B. Thiele, R. Frommelt, H. Faserforschung, Z. Textiltechnik, Polymerforschung 28, 405 (1977)

    Google Scholar 

  67. J.N. Israelachvili, P.M. McGuiggan, Forces between surfaces in liquids. Science 241, 795–800 (1988)

    CrossRef  Google Scholar 

  68. E.E. Meyer, K.J. Rosenberg, J. Israelachvili, Recent progress in understanding hydrophobic interactions. Proc. Natl. Acad. Sci. USA 103, 15739–15746 (2006)

    CrossRef  Google Scholar 

  69. D. Alsteens, E. Dague, P.G. Rouxhet, A.R. Baulard, Y.F. Dufrêne, Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23, 11977–11979 (2007)

    CrossRef  Google Scholar 

  70. A. Beigbeder, M. Jeusette, R. Mincheva, M. Claes, P. Brocorens, R. Lazzaroni, P. Dubois, On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. JNPN 5, 37–43 (2009)

    Google Scholar 

  71. E. Duquesne, J. Habimana, P. Degée, P. Dubois, Synthesis of silicone-methacrylate copolymers by ATRP using a nickel-based supported catalyst. Macromol. Chem. Phys. 207, 1116–1125 (2006)

    CrossRef  Google Scholar 

  72. T.C. Ngo, R. Kalinova, D. Cossement, E. Hennebert, R. Mincheva, R. Snyders, P. Flammang, P. Dubois, R. Lazzaroni, Ph Leclère, Modification of the adhesive properties of silicone-based coatings by block copolymers. Langmuir 30, 358–368 (2013)

    CrossRef  Google Scholar 

  73. E.W. van der Vegte, G. Hadziioannou, Acid–base properties and the chemical imaging of surface-bound functional groups studied with scanning force microscopy. J. Phys. Chem. B 101, 9563–9569 (1997)

    CrossRef  Google Scholar 

  74. J.N. Israelachvilli, Intermolecular and Surface Forces (Academic Press, New York, 1992)

    Google Scholar 

  75. T. Hugel, M. Seitz, The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 22, 989–1016 (2001)

    CrossRef  Google Scholar 

  76. B. Cappella, G. Dietler, Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)

    CrossRef  Google Scholar 

  77. R. Barattin, N. Voyer, Chemical modifications of AFM tips for the study of molecular recognition events. Chem. Commun. 13, 1513–1532 (2008)

    CrossRef  Google Scholar 

  78. C. Jérôme, N. Willet, R. Jérôme, A.S. Duwez, Electrografting of polymers onto AFM tips: a novel approach for chemical force microscopy and force spectroscopy. Chem. Phys. Chem. 5, 147–149 (2004)

    CrossRef  Google Scholar 

  79. C. Friedsam, M. Seitz, H.E. Gaub, Investigation of polyelectrolyte desorption by single molecule force spectroscopy. J. Phys. Condens. Matter 16, S2369–S2382 (2004)

    CrossRef  Google Scholar 

  80. J.H. Waite, Adhesion in byssally attached bivalves. Biol. Rev. 58, 209–231 (1983)

    CrossRef  Google Scholar 

  81. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)

    CrossRef  Google Scholar 

  82. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)

    CrossRef  Google Scholar 

  83. D. Alsteens, C.B. Ramsook, P.N. Lipke, Y.F. Dufrêne, Unzipping a functional microbial amyloid. ACS Nano 6, 7703–7711 (2012)

    CrossRef  Google Scholar 

  84. M.A. Nash, H.E. Gaub, Single-molecule adhesion of a stimuli-responsive oligo(ethylene glycol) copolymer to gold. ACS Nano 6, 10735–10742 (2012)

    CrossRef  Google Scholar 

  85. D.J. Crisp, G. Walker, G.A. Young, A.B. Yule, Adhesion and substrate choice in mussels and barnacles. J. Colloid Interface Sci. 104, 40–50 (1985)

    CrossRef  Google Scholar 

  86. N. Aldred, L.K. Ista, M.E. Callow, J.A. Callow, G.P. Lopez, A.S. Clare, Mussel (Mytilus edulis) byssus deposition in response to variations in surface wettability. J. R. Soc. Interface 3, 37–43 (2006)

    CrossRef  Google Scholar 

  87. R.J. Stewart, T.C. Ransom, V. Hlady, Natural underwater adhesives. J. Polym. Sci. Part B Polym. Phys. 49, 757–771 (2011)

    CrossRef  Google Scholar 

  88. J. Yu, Y. Kan, M. Rapp, E. Danner, W. Wei, S. Das, D.R. Miller, Y. Chen, J.H. Waite, J.N. Israelachvili, Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc. Natl. Acad. Sci. USA 110, 15680–15685 (2013)

    CrossRef  Google Scholar 

  89. A.F.M. Barton, Solubility parameters. Chem. Rev. 75(6), 731–753 (1975)

    CrossRef  Google Scholar 

  90. S. O’Driscoll, G. Demirel, R.A. Farrell, T.G. Fitzgerald, C. O’Mahony, J.D. Holmes, M.A. Morris, The morphology and structure of PS-b-P4VP block copolymer films by solvent annealing: effect of the solvent parameter. Polym. Adv. Technol. 22, 915–923 (2011)

    CrossRef  Google Scholar 

  91. J. Brandrup, E.H. Immergut, E.A. Grulke (eds.), Polymer Handbook, 4th edn. (Wiley, New York, 1999)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the ARC BIOMIME project (ARC AUWB-2008-08/12-UMH15), the Science Policy Office of the Belgian Federal Government (Belspo IAP-PAI 7/05 Functional Supramolecular Systems—FS2), and Fund for Scientific Research of Belgium (FRS-FNRS). The authors also express their thanks to the European Cooperation in Science and Technology (COST) Action TD0906 (2009–2013): «Biological Adhesives: from Biology to Biomimetics». Ph.L., Y.D., and P.F. are Senior Research Associate and Research Directors of FRS-FNRS (Belgium), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Leclère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ngo, T.C. et al. (2017). On the Bioadhesive Properties of Silicone-Based Coatings by Incorporation of Block Copolymers. In: Heepe, L., Xue, L., Gorb, S. (eds) Bio-inspired Structured Adhesives. Biologically-Inspired Systems, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-59114-8_15

Download citation