Split-and-merge Tweak in Cross Entropy Clustering

  • Krzysztof Hajto
  • Konrad Kamieniecki
  • Krzysztof Misztal
  • Przemysław Spurek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10244)

Abstract

In order to solve the local convergence problem of the Cross Entropy Clustering algorithm, a split-and-merge operation is introduced to escape from local minima and reach a better solution. We describe the theoretical aspects of the method in a limited space, present a few strategies of tweaking the clustering algorithm and compare them with existing solutions. The experiments show that the presented approach increases flexibility and effectiveness of the whole algorithm.

Keywords

Cross entropy clustering Clusters splitting Clusters merging 

Notes

Acknowledgement

The research of Krzysztof Misztal is supported by the National Science Centre (Poland) [grant no. 2012/07/N/ST6/02192]. The research of Przemysław Spurek by the National Science Centre (Poland) [Grant No. 2015/19/D/ST6/01472].

References

  1. 1.
    Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)Google Scholar
  2. 2.
    Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognit. 28(5), 781–793 (1995)CrossRefGoogle Scholar
  3. 3.
    Fraley, C., Raftery, A.E.: MCLUST: software for model-based cluster analysis. J. Classif. 16(2), 297–306 (1999)CrossRefMATHGoogle Scholar
  4. 4.
    Hinton, G.E., Dayan, P., Revow, M.: Modeling the manifolds of images of handwritten digits. IEEE Trans. Neural Networks 8(1), 65–74 (1997)CrossRefGoogle Scholar
  5. 5.
    Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  6. 6.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)CrossRefGoogle Scholar
  7. 7.
    Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evolving Syst. 3(3), 135–151 (2012)CrossRefGoogle Scholar
  8. 8.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33(9), 1455–1465 (2000)CrossRefGoogle Scholar
  9. 9.
    McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, vol. 382. Wiley (2007)Google Scholar
  10. 10.
    Misztal, K., Spurek, P., Saeed, E., Saeed, K., Tabor, J.: Cross entropy clustering approach to iris segmentation for biometrics purpose. Schedae Informaticae 24, 31–40 (2015)Google Scholar
  11. 11.
    Shoham, S.: Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions. Pattern Recogn. 35(5), 1127–1142 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tabor, J., Misztal, K.: Detection of elliptical shapes via cross-entropy clustering. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 656–663. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38628-2_78 CrossRefGoogle Scholar
  13. 13.
    Tabor, J., Spurek, P.: Cross-entropy clustering. Pattern Recogn. 47(9), 3046–3059 (2014)CrossRefMATHGoogle Scholar
  14. 14.
    Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: SMEM algorithm for mixture models. Neural Comput. 12(9), 2109–2128 (2000)CrossRefGoogle Scholar
  15. 15.
    Xu, R., Wunsch, D.: Clustering. Wiley-IEEE Press (2009)Google Scholar
  16. 16.
    Zhang, B., Zhang, C., Yi, X.: Competitive EM algorithm for finite mixture models. Pattern Recogn. 37(1), 131–144 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Zhang, Z., Chen, C., Sun, J., Chan, K.L.: Em algorithms for gaussian mixtures with split-and-merge operation. Pattern Recogn. 36(9), 1973–1983 (2003)CrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Krzysztof Hajto
    • 1
  • Konrad Kamieniecki
    • 1
  • Krzysztof Misztal
    • 1
  • Przemysław Spurek
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland

Personalised recommendations