Classifier Selection for Motor Imagery Brain Computer Interface

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10244)


The classification process in the domain of brain computer interfaces (BCI) is usually carried out with simple linear classifiers, like LDA or SVM. Non-linear classifiers rarely provide a sufficient increase in the classification accuracy to use them in BCI. However, there is one more type of classifiers that could be taken into consideration when looking for a way to increase the accuracy - boosting classifiers. These classification algorithms are not common in BCI practice, but they proved to be very efficient in other applications.


Imagery brain computer interface Classification Boosting 



This work was supported in part by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Science and Technology.


  1. 1.
    Breiman, L., et al.: Arcing classifier. Ann. Stat. 26(3), 801–849 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Burduk, R.: The AdaBoost algorithm with the imprecision determine the weights of the observations. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS, vol. 8398, pp. 110–116. Springer, Cham (2014). doi: 10.1007/978-3-319-05458-2_12 CrossRefGoogle Scholar
  3. 3.
    Donnerer, M., Steed, A.: Using a p300 brain-computer interface in an immersive virtual environment. Presence Teleoperators Virtual Environ. 19(1), 12–24 (2010)CrossRefGoogle Scholar
  4. 4.
    Fatourechi, M., Bashashati, A., Ward, R.K., Birch, G.E.: Emg and eog artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118(3), 480–494 (2007)CrossRefGoogle Scholar
  5. 5.
    Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2), 337–407 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)CrossRefGoogle Scholar
  7. 7.
    Guger, C., Schlogl, A., Neuper, C., Walterspacher, D., Strein, T., Pfurtscheller, G.: Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 9(1), 49–58 (2001)CrossRefGoogle Scholar
  8. 8.
    Guger, C., Schlogl, A., Walterspacher, D., Pfurtscheller, G.: Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under windows-entwurf eines eeg-basierten brain-computer interfaces (bci) mit standardkomponenten, das unter windows in echtzeit arbeitet. Biomedizinische Technik/Biomed. Eng. 44(1–2), 12–16 (1999)CrossRefGoogle Scholar
  9. 9.
    Hayashi, I., Tsuruse, S., Suzuki, J., Kozma,R.T.: A proposal for applying PDI-boosting to brain-computer interfaces. In: 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2012)Google Scholar
  10. 10.
    Jasper, H.H.: The ten twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958)Google Scholar
  11. 11.
    Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Zhang, H., Zhao, Q., Zhang, L.: Common spatial-spectral boosting pattern for brain-computer interface. In: Proceedings of the Twenty-First European Conference on Artificial Intelligence, pp. 537–542. IOS Press (2014)Google Scholar
  13. 13.
    Müller-Putz, G.R., Kaiser, V., Solis-Escalante, T., Pfurtscheller, G.: Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Med. Biol. Eng. Comput. 48(3), 229–233 (2010)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)CrossRefGoogle Scholar
  15. 15.
    Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 6(3), 316–325 (1998)CrossRefGoogle Scholar
  16. 16.
    Porwik, P., Doroz, R., Orczyk, T.: The k-NN classifier and self-adaptive hotelling data reduction technique in handwritten signatures recognition. Pattern Anal. Appl. 18(4), 983–1001 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Porwik, P., Orczyk, T., Lewandowski, M., Cholewa, M.: Feature projection k-NN classifier model for imbalanced and incomplete medical data. Biocybern. Biomed. Eng. 36(4), 644–656 (2016)CrossRefGoogle Scholar
  18. 18.
    Raudys, S.J., Jain, A.K., et al.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)CrossRefGoogle Scholar
  19. 19.
    Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O., Lécuyer, A.: OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence Teleoperators Virtual Environ. 19(1), 35–53 (2010)CrossRefGoogle Scholar
  20. 20.
    Schapire, R.E.: Using output codes to boost multiclass learning problems. ICML 97, 313–321 (1997)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Department of Systems and Computer NetworksWroclaw University of Science and TechnologyWrocławPoland

Personalised recommendations