Skip to main content

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10261))

Included in the following conference series:

  • 2691 Accesses

Abstract

Recently, it has been demonstrated that memristors can be utilized as logic operations and memory elements. In this paper, several logic gates extended from MAGIC–Memristor-Aided Logic, including IMP, XNOR, NAND and OR logic gates, are presented. The extended logic gates (except for the OR logic gate) are not only used as standalone logic but also can be performed within a crossbar array, providing opportunities for novel non-von Neumann computer architectures. Another logic gate (OR gate) is presented to alleviate the issue where the logic state of the output memristor can not fully switch to the desired state in the previous designs.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61374150 and 11271146), the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012), and the Doctoral Fund of Ministry of Education of China (Grant No. 20130142130012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59, 1813–1828 (2012)

    Article  Google Scholar 

  2. Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  4. Junsangsri, P., Lombardi, F.: Design of a hybrid memory cell using memristance and ambipolarity. IEEE Trans. Nanotechnol. 12, 71–80 (2013)

    Article  Google Scholar 

  5. Shin, S., Kim, K., Kang, S.M.: Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10, 266–274 (2011)

    Article  Google Scholar 

  6. Pershin, Y.V., Ventra, M.D.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I: Reg. Papers 57, 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  7. Shin, S., Kim, K., Kang, S.M.: Resistive computing: memristors-enabled signal multiplication. IEEE Trans. Circuits Syst. I: Reg. Papers 60, 1241–1249 (2013)

    Article  MathSciNet  Google Scholar 

  8. Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phys. Lett. A 375, 1661–1665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    Article  Google Scholar 

  10. Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100, 2050–2060 (2012)

    Article  Google Scholar 

  11. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  12. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Magic-memristor-aided logic. IEEE Trans. Circuits Syst. II: Exp. Briefs 61, 895–899 (2014)

    Article  Google Scholar 

  13. Shin, S., Kim, K., Kang, S.M.: Reconfigurable stateful NOR gate for large-scale logic-array integrations. IEEE Trans. Circuits Syst. II: Exp. Briefs 58, 442–446 (2011)

    Article  Google Scholar 

  14. Kim, K., Shin, S., Kang, S.M.: Field programmable stateful logic array. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30, 1800–1813 (2011)

    Article  Google Scholar 

  15. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (imply) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 2054–2066 (2014)

    Article  Google Scholar 

  16. Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II: Exp. Briefs 62, 786–790 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, L., He, Z., Wang, X., Zeng, Z. (2017). Several Logic Gates Extended from MAGIC-Memristor-Aided Logic. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10261. Springer, Cham. https://doi.org/10.1007/978-3-319-59072-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59072-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59071-4

  • Online ISBN: 978-3-319-59072-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics