Skip to main content

Discrete Cosine Transformation as Alternative to Other Methods of Computational Intelligence for Function Approximation

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Included in the following conference series:

Abstract

The discrete cosine transform (DCT) is commonly known in signal processing. In this paper DCT is used in computational intelligence to show its usefulness. Proposed DCT method is used to reduce the size of system which results in faster processing with limited and controlled precision lost. Proposed method is compared to other ones like Fuzzy Systems, Neural Networks, Support Vector Machines, etc. to investigate the ability to solve sample problem. The results show that the method can be successfully used and the results are comparable or better to those achieved by other methods considered as powerful ones.

This work was supported by the National Science Centre, Krakow, Poland, under grant No.2015/17/B/ST6/01880.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greblicki, W., Pawlak, M.: Fourier and hermite series estimates of regression functions. Ann. Inst. Stat. Math. 37(1), 443–454 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rutkowski, L., Rafajlowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–1091 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rafajlowicz, E., Pawlak, M.: On function recovery by neural networks based on orthogonal expansions. Nonlinear Anal. Theory Methods Appl. 30(3), 1343–1354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kayacan, E., Kayacan, E., Khanesar, M.A.: Identification of nonlinear dynamic systems using type-2 fuzzy neural networks a novel learning algorithm and a comparative study. IEEE Trans. Ind. Electron. 62(3), 1716–1724 (2015)

    Article  MATH  Google Scholar 

  5. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC–15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  6. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1127 (2009). Also published as a book. Now Publishers

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahl, G.E., Ranzato, M., Mohamed, A., Hinton, G.E.: Phone recognition with the mean-covariance restricted boltzmann machine. In: NIPS2010

    Google Scholar 

  8. Wu, X., Rozycki, P., Wilamowski, B.: Hybride constructive algorithm for single layer feeforward network learning. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1659–1668 (2015)

    Article  MathSciNet  Google Scholar 

  9. Wilamowski, B.M.: Neural network architectures and learning algorithms- how not to be frustrated with neural networks. IEEE Ind. Electron. Mag. 3(4), 56–63 (2009)

    Article  Google Scholar 

  10. Wilamowski, B.M., Yu, H.: Improved computation for levenberg marquardt training. IEEE Trans. Neural Netw. 21(6), 930–937 (2010)

    Article  Google Scholar 

  11. Tiantian, X., Hao, Y., Hewlett, J., Rozycki, P., Wilamowski, B.: Fast and efficient second-order method for training radial basis function networks. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 609–619 (2012)

    Article  Google Scholar 

  12. Lang, K.L., Witbrock, M.J.: Learning to tell two spirals apart. In: Proceedings of the 1988 Connectionists Models Summer School. Morgan Kaufman (1988)

    Google Scholar 

  13. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 2, pp. 524–532. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  14. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw. 5(6), 989–993 (1994)

    Article  Google Scholar 

  15. Demuth, H.B., Beale, M.: Neural Network Toolbox: For Use with MATLAB. Mathworks, Natick (2000)

    Google Scholar 

  16. Różycki, P., Kolbusz, J., Bartczak, T., Wilamowski, B.M.: Using parity-N problems as a way to compare abilities of shallow, very shallow and very deep architectures. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 112–122. Springer, Cham (2015). doi:10.1007/978-3-319-19324-3_11

    Chapter  Google Scholar 

  17. Hunter, D., Hao, Y., Pukish, M.S., Kolbusz, J., Wilamowski, B.M.: Selection of proper neural network sizes and architecturesa comparative study. IEEE Trans. Ind. Inform. 8, 228–240 (2012)

    Article  Google Scholar 

  18. Smola, A.J., Schlkopf, B.: A tutorial on support vector regression. NeuroCOLT2 Technical report NC2-TR-1998-030 (1998)

    Google Scholar 

  19. Yu, H., Xie, T., Hewlett, J., Rozycki, P., Wilamowski, B.M.: Fast and efficient second order method for training radial basis function networks. IEEE Trans. Neural Netw. 24(4), 609–619 (2012)

    Google Scholar 

  20. Cecati, C., Kolbusz, J., Siano, P., Rozycki, P., Wilamowski, B.: A novel RBF training algorithm for short-term electric load forecasting: comparative studies. IEEE Trans. Ind. Electron. 62(10), 6519–6529 (2015)

    Article  Google Scholar 

  21. Rao, K., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, Boston (1990). ISBN0-12-580203-X

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Korniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Olejczak, A., Korniak, J., Wilamowski, B.M. (2017). Discrete Cosine Transformation as Alternative to Other Methods of Computational Intelligence for Function Approximation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics