Advertisement

Cognitive Content Recommendation in Digital Knowledge Repositories – A Survey of Recent Trends

  • Andrzej M. J. Skulimowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10246)

Abstract

This paper presents an overview of the cognitive aspects of content recommendation process in large heterogeneous knowledge repositories and their applications to design algorithms of incremental learning of users’ preferences, emotions, and satisfaction. This allows the recommendation procedures to align to the present and expected cognitive states of a user, increasing the combined recommendation and repository use efficiency. The learning algorithm takes into account the results of the cognitive and neural modelling of users’ decision behaviour. Inspirations from nature used in recommendation systems differ from the usual mimicking the biological neural processes. Specifically, a cognitive knowledge recommender may follow a strategy to discover emotional patterns in user behaviour and then adjust the recommendation procedure accordingly. The knowledge of cognitive decision mechanisms helps to optimize recommendation goals. Other cognitive recommendation procedures assist users in creating consistent learning or research groups. The primary application field of the above algorithms is a large knowledge repository coupled with an innovative training platform developed within an ongoing Horizon 2020 research project.

Keywords

Research recommenders Scientific big data Personal learning environments Preference modelling Mobile and ubiquitous learning 

Notes

Acknowledgement

This paper has been supported by the EU Horizon 2020 research project MOVING (http://www.moving-project.eu) under Contract No. 693092. Selected preliminary results concerning recommendation systems trends have been obtained during the project SCETIST (www.ict.foresight.pl) financed by the ERDF and contributed to MOVING.

References

  1. 1.
    Adomavicius, G., Kwon, Y.O.: Multicriteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Aher, S.B., Lobo, L.: Combination of machine learning algorithms for recommendation of courses in e-learning system based on historical data. Knowl. Based Syst. 51, 1–14 (2013)CrossRefGoogle Scholar
  3. 3.
    Bobadilla, J., Ortega, F., Hernando, A., Alcalá, J.: Improving collaborative filtering recommender system results and performance using genetic algorithms. Knowl. Based Syst. 24(8), 1310–1316 (2011). doi: 10.1016/j.knosys.2011.06.005 CrossRefGoogle Scholar
  4. 4.
    Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  5. 5.
    Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Knowl. Based Syst. 22, 261–265 (2009)CrossRefGoogle Scholar
  6. 6.
    Cechinel, C., Camargo, S.D.S., Sánchez-Alonso, S., Sicilia, M.A.: Towards automated evaluation of learning resources inside repositories. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 25–46. Springer, New York (2014). doi: 10.1007/978-1-4939-0530-0_2 CrossRefGoogle Scholar
  7. 7.
    Chen, L.S., Hsu, F.H., Chen, M.C., Hsu, Y.C.: Developing recommender systems with the consideration of product profitability for sellers. Inf. Sci. 178, 1032–1048 (2008)CrossRefGoogle Scholar
  8. 8.
    Chen, W., Niu, Z., Zhao, X., Li, Y.: A hybrid recommendation algorithm adapted in e-learning environments. World Wide Web 17, 271–284 (2014)CrossRefGoogle Scholar
  9. 9.
    Cho, J., Kwon, K., Park, Y.: Q-rater: a collaborative reputation system based on source credibility theory. Expert Syst. Appl. 36, 3751–3760 (2009)CrossRefGoogle Scholar
  10. 10.
    Diaz, A., Motz, R., Rohrer, E., Tansini, L.: An ontology network for educational recommender systems. In: Santos, O., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 67–93. IGI Global, Hershey (2012). doi: 10.4018/978-1-61350-489-5.ch004 CrossRefGoogle Scholar
  11. 11.
    Erdt, M., Fernández, A., Rensing, C.: Evaluating recommender systems for technology enhanced learning: a quantitative survey. IEEE Trans. Learn. Technol. 8(4), 326–344 (2015). doi: 10.1109/TLT.2015.2438867 CrossRefGoogle Scholar
  12. 12.
    Fernández, A., Anjorin, M., Dackiewicz, I., Rensing, C.: Recommendations from heterogeneous sources in a technology enhanced learning ecosystem. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 251–265. Springer, New York (2014). doi: 10.1007/978-1-4939-0530-0_12 CrossRefGoogle Scholar
  13. 13.
    Gligor, V., Wing, J.M.: Towards a theory of trust in networks of humans and computers. In: Christianson, B., Crispo, B., Malcolm, J., Stajano, F. (eds.) Security Protocols 2011. LNCS, vol. 7114, pp. 223–242. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25867-1_22 CrossRefGoogle Scholar
  14. 14.
    Katarya, R., Verma, O.P.: Recent developments in affective recommender systems. Phys. A 461, 182–190 (2016)CrossRefGoogle Scholar
  15. 15.
    Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval. Educ. Technol. Soc. 12(4), 30–42 (2009)Google Scholar
  16. 16.
    Manouselis, N., Drachsler, H., Verbert, K., Duval, E.: Recommender Systems for Learning, p. 90. Springer, Berlin (2012)Google Scholar
  17. 17.
    Lai, C.H., Liu, D.R.: Integrating knowledge flow mining and collaborative filtering to support document recommendation. J. Syst. Softw. 82, 2023–2037 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Motoda, H.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)CrossRefGoogle Scholar
  19. 19.
    MOVING Project web site. www.moving-project.eu. Accessed 31 Mar 2017
  20. 20.
    Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32287-7_8 CrossRefGoogle Scholar
  21. 21.
    Mangina, E., Kilbride, J.: Evaluation of keyphrase extraction algorithm and tiling process for a document/resource recommender within e-learning. Comput. Educ. 50, 807–820 (2008)CrossRefGoogle Scholar
  22. 22.
    Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web Internet Web Inf. Syst. 10(4), 415–441 (2007)CrossRefGoogle Scholar
  23. 23.
    Moedritscher, F.: Towards a recommender strategy for personal learning environments. In: 4th ACM Conference on Recommender Systems (RecSys 2010)/5th European Conference on Technology Enhanced Learning (EC-TEL 2010), Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning. Recsystel, Procedia Computer Science, Barcelona 2010, vol. 1(2), pp. 2775–2782 (2010)Google Scholar
  24. 24.
    Nishioka, C., Scherp, A.: Profiling vs. time vs. content: what does matter for top-k publication recommendation based on twitter Profiles? In: 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2016), Newark, NJ, USA, pp. 171–180, 19–23 June 2016. http://dx.doi.org/10.1145/2910896.2910898
  25. 25.
    Porcel, C., Lopez-Herrera, A.G., Herrera-Viedma, E.: A recommender system for research resources based on fuzzy linguistic modeling. Expert Syst. Appl. 36, 5173–5183 (2009)CrossRefGoogle Scholar
  26. 26.
    Porcel, C., Moreno, J.M., Herrera-Viedma, E.: A multi-disciplinar recommender system to advice research resources in University Digital Libraries. Expert Syst. Appl. 36, 12520–12528 (2009)CrossRefGoogle Scholar
  27. 27.
    Pu, P., Li, C., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User Adap. Inter. 22(4–5), 317–355 (2012)CrossRefGoogle Scholar
  28. 28.
    Rozewski, P., Kusztina, E., Tadeusiewicz, R., Zaikin, O.: Intelligent Open Learning Systems: Concepts, Models and Algorithms. Intelligent Systems Reference Library, vol. 22, p. 257. Springer, Berlin (2011)Google Scholar
  29. 29.
    Salehi, M.: Application of implicit and explicit attribute based collaborative filtering and BIDE for learning resource recommendation. Data Knowl. Eng. 87, 130–145 (2013). http://dx.doi.org/10.1016/j.datak.2013.07.001 CrossRefGoogle Scholar
  30. 30.
    Santos, O.C., Boticario, J.G., Pérez-Marin, D.: Extending web-based educational systems with personalised support through user centred designed recommendations along the e-learning life cycle. Sci. Comput. Program. 88, 92–109 (2014)CrossRefGoogle Scholar
  31. 31.
    Santos, O.C., Boticario, J.G., Manjarrés-Riesco, A.: An approach for an affective educational recommendation model. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C. (eds.) Recommender Systems for Technology Enhanced Learning: Research Trends and Applications, pp. 123–143. Springer, New York (2014)CrossRefGoogle Scholar
  32. 32.
    Santos, O.C., Saneiro, M., Boticario, J., Rodriguez-Sanchez, C.: Towards interactive context-aware affective educational recommendations in computer assisted language learning. New Rev. Hypermedia Multimedia 22(1–2), 27–57 (2015). doi: 10.1080/13614568.2015.1058428 Google Scholar
  33. 33.
    Shi, F., Marini, J.L., Audry, E.: Towards a psycho-cognitive recommender system. In: ERM4CT 2015: Proceedings of the International Workshop on Emotion Representations and Modelling for Companion Technologies, Seattle, pp. 25–31, 9–13 November 2015. http://dx.doi.org/10.1145/2829966.2829968
  34. 34.
    Sielis, G.A., Mettouris, C., Tzanavari, A., Papadopoulos, G.A.: Context-aware recommendations using topic maps technology for the enhancement of the creativity process. In: Santos, O.C., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 43–66. IGI Global, Hershey (2012). doi: 10.4018/978-1-61350-489-5.ch003 CrossRefGoogle Scholar
  35. 35.
    Skulimowski, A.M.J.: Optimal strategies for quantitative data retrieval in distributed database systems. In: Proceedings of the Second International Conference on Intelligent Systems Engineering, Hamburg, IEE Conference Publication No. 395, IEE, London, pp. 389–394, 5–9 September 1994. doi: 10.1049/cp:19940655
  36. 36.
    Skulimowski, A.M.J.: Freedom of choice and creativity in multicriteria decision making. In: Theeramunkong, T., Kunifuji, S., Sornlertlamvanich, V., Nattee, C. (eds.) KICSS 2010. LNCS (LNAI), vol. 6746, pp. 190–203. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24788-0_18 CrossRefGoogle Scholar
  37. 37.
    Skulimowski, A.M.J.: Universal intelligence, creativity, and trust in emerging global expert systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 582–592. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38610-7_53 CrossRefGoogle Scholar
  38. 38.
    Skulimowski, A.M.J.: Anticipatory network models of multicriteria decision-making processes. Int. J. Syst. Sci. 45(1), 39–59 (2014). doi: 10.1080/00207721.2012.670308 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Skulimowski, A.M.J.: Impact of future intelligent information technologies on the methodology of scientific research. In: Proceedings 16th IEEE International Conference on Computer and Information Technology, Nadi, Fiji, IEEE CPS, pp. 238–247, 7–10 December 2016. doi: 10.1109/CIT.2016.118
  40. 40.
    Skulimowski, A.M.J., Badecka, I., Czerni, M., Klamka, J., Kluz, D., Ligęza, A., Okoń-Horodyńska, E., Pukocz, P., Rotter, P., Szymlak, E., Tadeusiewicz, R., Wisła, R.: Trends and Scenarios of Selected Information Society Technologies. Advances in Decision Sciences and Futures Studies, vol. 1, p. 634. Progress & Business Publishers, Kraków (2016)Google Scholar
  41. 41.
    Skulimowski, A.M.J., Rotter, P., Tadeusiewicz, R.: Technological evolution models of neurocognitive and vision systems in medicine: prospects and scenarios for the development of brain-computer interfaces (BCI) until 2025 [in Polish]. In: Skulimowski, A.M.J. (ed.) Scenarios and Development Trends of Selected Information Society Technologies until 2025. Final Report. Progress & Business Publishers, Kraków, pp. 234–255 (2013). http://www.ict.foresight.pl
  42. 42.
    Tang, T.Y., Daniel, B.K., Romero, C.: Special issue on recommender systems for and in social and online learning environments. Expert Syst. 32(2), 261–263 (2015)CrossRefGoogle Scholar
  43. 43.
    Tejeda-Lorente, A., Porcel, C., Bernabé-Moreno, J., Herrera-Viedma, E.: REFORE: a recommender system for researchers based on bibliometrics. Appl. Soft Comput. 30, 778–791 (2015)CrossRefGoogle Scholar
  44. 44.
    Van Maanen, L., Van Rijn, H., van Grootel, M., Kemna, S., Klomp, M., Scholtens, E.: Personal publication assistant: abstract recommendations by a cognitive model. Cogn. Syst. Res. 11, 120–129 (2010)CrossRefGoogle Scholar
  45. 45.
    Victor, P., Cornelis, C., De Cock, M.: Trust Networks for Recommender Systems. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  46. 46.
    Verbert, K., Manouselis, N., Xavier, O., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-aware recommender systems for learning: a survey and future challenges. IEEE Trans. Learn. Technol. 5(4), 318–335 (2012)CrossRefGoogle Scholar
  47. 47.
    Vesin, B., Milicevic, A.K., Ivanovic, M., Budimac, Z.: Applying recommender systems and adaptive hypermedia for e-learning personalization. Comput. Inform. 32(3), 629–659 (2013)Google Scholar
  48. 48.
    Zaikin, O., Tadeusiewicz, R., Różewski, P., Busk Kofoed, L., Malinowska, M., Żyławski, A.: Teachers’ and students’ motivation model as a strategy for open distance learning processes. Bull. Pol. Acad. Sci. Tech. Sci. 64(4), 943–955 (2016). doi: 10.1515/bpasts-2016-0103 Google Scholar
  49. 49.
    Zapata, A., Menendez, V.H., Prieto, M.E., Romero, C.: A framework for recommendation in learning object repositories: an example of application in civil engineering. Adv. Eng. Softw. 56, 1–14 (2013)CrossRefGoogle Scholar
  50. 50.
    Zhou, M., Xu, Y.: Challenges to use recommender systems to enhance meta-cognitive functioning in online learners. In: Santos, O., Boticario, J. (eds.) Educational Recommender Systems and Technologies: Practices and Challenges, pp. 282–301. IGI Global, Hershey (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair of Automatic Control and Biomedical Engineering, Decision Science LaboratoryAGH University of Science and TechnologyKrakówPoland
  2. 2.International Centre for Decision Sciences and Forecasting, Progress & Business FoundationKrakówPoland

Personalised recommendations