Vis viva in a Monadic World

  • Tzuchien Tho
Part of the Studies in History and Philosophy of Science book series (AUST, volume 46)


The sixth and final chapter of this book attempts use the perspective developed in the previous chapters to resolve a seeming contradiction between the doctrine of inherent substantial forces developed in Leibniz’s dynamics and the late doctrine of the autarchy of monads, a mainstay of his late period (post-1695) metaphysics. The immediate problem is how a dynamical theory of corporeal motion can be coherent with the seeming reductive kinematic nature of physical reality implied by monadic perception. This problem is treated first by looking at Leibniz’s theory of space in the analysis situs project and using its insights to understand the nature of relative motion in his correspondences with Clarke. This investigation sheds light on the concept of physical causality in the dynamics that treats the effects of physical phenomenon as a group of internally related empirical variations. Solidifying this concept of structural or dynamical causality by contextualizing it through the methodology of symmetry and invariance that Leibniz inherited from his mentor Huygens, this notion of causality can be shown to be consistent with the autarchy of monads.


2. Other Texts of G.W. Leibniz (Not Cited by Abbreviation)

    II. Texts by Other Authors

    1. Leibniz, G.W., and Samuel Clarke. 2000. Correspondence. Ed. and Intro. Roger Ariew. Indianapolis: Hackett Publishing Company.Google Scholar
    2. Aiton, E.J. 1965. An Imaginary Error in the Celestial Mechanics of Leibniz. Annals of Science 21 (3): 169–173.CrossRefGoogle Scholar
    3. Arthur, Richard T.W. 2013. Leibniz’s Theory of Space. Foundations of Science 18 (3): 499–528.CrossRefGoogle Scholar
    4. Barrow, Issac. 1860. The Mathematical Works of Issac Barrow. Ed. W. Whewell. Cambridge: Cambridge University Press.Google Scholar
    5. Clavius, Christophorus. 1611–1612. Opera Mathematica Vol. I. Moguntiae/Mainz. Reprinted in 1999. Hildesheim/New York: Olms-Weidmann.Google Scholar
    6. De Risi, Vincenzo. 2007. Geometry and Monadology. Basel: Birkhäuser.CrossRefGoogle Scholar
    7. De Risi, Vincenzo. 2015. Leibniz’s theory of parallel lines. In Mathematizing Space, ed. Vincenzo de Risi, 1–13. Basel: Birkhäuser.Google Scholar
    8. Duchesneau, François. 2010. Leibniz, le Vivant Et L’Organisme. Paris: Vrin.Google Scholar
    9. Fichant, Michel. 1995. De la puissance à l’action: la singularité de la Dynamique. Revue de Métaphysique et de Morale 100 (1): 49–81.Google Scholar
    10. Fichant, Michel. 2004. Introduction. In G.W. Leibniz: Discours de Métaphysique et Monadologie, ed. Michel Fichant, 7–140. Paris: Editions Gallimard.Google Scholar
    11. Garber, Daniel. 1985. Leibniz and the Foundations of Physics: The Middle Years. In The Natural Philosophy of Leibniz, ed. K. Okruhlik and J.R. Brown, 27–130. Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
    12. Garber, Daniel. 2009. Leibniz: Body, Substance, Monad. Oxford/New York: Oxford University Press.CrossRefGoogle Scholar
    13. Hankins, Thomas. 1990. Jean D’Alembert: Science and the Enlightenment. New York: Gordon and Breach.Google Scholar
    14. Huygens, Christiaan. 1929. Oeuvres Completes, Vol. 16. La Haye: Martinus Hijhof.Google Scholar
    15. Huygens, Christiaan. 1977. The motion of colliding bodies (trans: Richard J. Blackwell). Isis 68 (4): 574–597.CrossRefGoogle Scholar
    16. Newton, Issac. 1972. Mathematical Principles of Natural Philosophy, Vol. I. Trans. Andrew Motte and ed. Florian Cajori. Berkeley/Los Angeles/London: University of California Press.Google Scholar
    17. Proclus, Diadochus. 1970. A Commentary on the First Book of Euclid’s Elements. Trans. Glenn R. Morrow. Princeton University Press.Google Scholar
    18. Reichenbach, Hans. 1928. Philosophie der Raum-Zeit-Lehre. Berlin: De Gruyter. English edition: Reichenbach, Hans. 1957. The Philosophy of Space and Time (trans: Maria Reichenbach and John Freund). New York: Dover Publications.Google Scholar
    19. Roberval, Gilles P. 1996. Eléments de géometrie de G.P. Roberval. Ed. Vincent Jullien. Paris: Vrin.Google Scholar
    20. Robinet, André. 1984. Dynamique et fondements métaphysiques. Studia Leibnitiana Sonderheft 13: 1–25.Google Scholar
    21. Wallis, John. 1695. Opera Mathematica Vol. I. Oxford: E. Theatro Sheldoniano.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tzuchien Tho
    • 1
  1. 1.Università degli Studi di MilanoMilanItaly

Personalised recommendations