Continuity and Causation in the Dynamics

  • Tzuchien Tho
Part of the Studies in History and Philosophy of Science book series (AUST, volume 46)


This chapter continues with a three-part presentation of the central architectonic components of the dynamics. In this chapter, we examine the status of continuity in the theory of motion developed in Leibniz’s dynamics. The chapter traces some difficulties in the development of continuous motion in order to highlight the productive frictions between Leibniz’s attempts to provide a geometrical and dynamical account of motion. The status of continuity will highlight what is at stake in Leibniz’s focus on vis as the cause of physical phenomenon: the distinction as well as the connection between ideal (geometrical) continuities and dynamical action.


2. Other Texts of G.W. Leibniz (Not Cited by Abbreviation)

  1. Leibniz, G.W. 1991. Phoranomus seu de potentia et legibus naturae. Ed. and annotation by André Robinet. Physis 28(2): 429–541 and Physis 28(3): 797–885.Google Scholar
  2. Leibniz, G.W. 2004. Discours de Métaphysique et Monadologie. Ed. and Intro. Michel Fichant. Paris: Editions Gallimard.Google Scholar

II. Texts by Other Authors

  1. Aristotle. 2001. The Basic Works of Aristotle. Ed. Richard McKeon. New York: Modern Library.Google Scholar
  2. Beeley, Philip. 1996. Kontinuität und Mechanismus. Zur Philosophie des jungen Leibniz in ihrem ideengeschichtlichen Kontext. Studia Leibnitiana Suppementa 30: 228–260.Google Scholar
  3. Bertoloni Meli, Domenico. 1993. Equivalence and Priority: Newton Versus Leibniz. Oxford: Clarendon Press.Google Scholar
  4. D’Alembert, Jean. 1785. Encyclopédie méthodique.Google Scholar
  5. Duchesneau, François. 1994. La Dynamique de Leibniz. Paris: Vrin.Google Scholar
  6. Galilei, Galileo. 1898. Le Opere di Galileo Galilei Vol. VIII. Firenze: G. Barbera.Google Scholar
  7. Galilei, Galileo. 1960. On Motion and On Mechanics. Trans., intro. and notes I.E. Drabkin and Stillman Drake. Madison: University of Wisconsin Press.Google Scholar
  8. Galilei, Galileo. 1974. Two New Sciences. Trans. and ed. Stillman Drake. Madison: University of Wisconsin Press.Google Scholar
  9. Hermann, Jakob. 1716. Phoronomia, sive de viribus et motibus corporum. Amstelaedami (Amsterdam): R. & G. Wetstenios H.FF.Google Scholar
  10. Hobbes, Thomas. 1999. In De Corpore: Elementorum philosophiae sectio prima, ed. Karl Schuhmann. Paris: J. Vrin.Google Scholar
  11. Jungius, Joachim. 1699. Phoronomica. In Opuscula Mathematica, ed. Johannis Aldolfi Tassi, Henricum Siverum, and Balthasar Mentzer, 1–46. Hamburg: Gottfried Liebezeit.Google Scholar
  12. Knobloch, Eberhard. 2008. Generality and Infinitely Small Quantities in Leibniz’s Mathematics –The Case of His Arithmetical Quadrature of Conic Sections and Related Curves. In Infinitesimal Differences. Controversies Between Leibniz and His Contemporaries, ed. E. Goldenbaum and D. Jesseph, 172–183. Berlin: De Gruyter.Google Scholar
  13. Mercer, Christia. 2007. Leibniz’s Metaphysics: Its Origins and Development. Cambridge: Cambridge University Press.Google Scholar
  14. Newton, Issac. 1972. Mathematical Principles of Natural Philosophy, Vol. I. Trans. Andrew Motte and ed. Florian Cajori. Berkeley/Los Angeles/London: University of California Press.Google Scholar
  15. Strum, Leonhard Christoph. 1706. Natura et constitutione matheseos. Frankfurt: Jer. Schrey and Joh. Christ. Hartmann.Google Scholar
  16. Weigel, Erhard. 1776. Idea totius: Encyclopaediae mathematico-philosophica. Jena: Johannem Meyerum.Google Scholar
  17. Zedler, Johann Heinrich. 1731–1754. Grosses vollständiges Universal-Lexicon aller Wissenschafften und Künste. Halle/Leipzig: Johann Heinrich Zedler.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tzuchien Tho
    • 1
  1. 1.Università degli Studi di MilanoMilanItaly

Personalised recommendations