Advertisement

Constructing Shape Spaces from a Topological Perspective

  • Christoph Hofer
  • Roland Kwitt
  • Marc Niethammer
  • Yvonne Höller
  • Eugen Trinka
  • Andreas Uhl
  • for the ADNI
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10265)

Abstract

We consider the task of constructing (metric) shape space(s) from a topological perspective. In particular, we present a generic construction scheme and demonstrate how to apply this scheme when shape is interpreted as the differences that remain after factoring out translation, scaling and rotation. This is achieved by leveraging a recently proposed injective functional transform of 2D/3D (binary) objects, based on persistent homology. The resulting shape space is then equipped with a similarity measure that is (1) by design robust to noise and (2) fulfills all metric axioms. From a practical point of view, analyses of object shape can then be carried out directly on segmented objects obtained from some imaging modality without any preprocessing, such as alignment, smoothing, or landmark selection. We demonstrate the utility of the approach on the problem of distinguishing segmented hippocampi from normal controls vs. patients with Alzheimer’s disease in a challenging setup where volume changes are no longer discriminative.

Keywords

Simplicial Complex Shape Space Persistent Homology Persistence Diagram Topological Perspective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Apostolova, L.G., Green, A.E., Babakchanian, S., Hwang, K.S., Chou, Y.Y., Toga, A.W., Thompson, P.M.: Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment, and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26(1), 17–27 (2012)CrossRefGoogle Scholar
  2. 2.
    Baker, J.A.: Integration over spheres and the divergence theorem for balls. Am. Math. Mon. 104(1), 36–47 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. Math. Imaging Vis. 50(1), 60–97 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beentjes, C.H.L.: Quadrature on a Spherical Surface (2015). http://people.maths.ox.ac.uk/beentjes/Essays/QuadratureSphere.pdf
  5. 5.
    Bookstein, F.: Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1(2), 181–242 (1986)CrossRefzbMATHGoogle Scholar
  6. 6.
    Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov-Hausdorff stable signatures for shapes using persistence. Comput. Graph. Forum 28(5), 1393–1403 (2009)CrossRefGoogle Scholar
  8. 8.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(L_p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley series in Probability and Statistics. Wiley, New York (1998)zbMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.L., Topology, C.: An Introduction. American Mathematical Society, Providence (2010)Google Scholar
  11. 11.
    Heckemann, R.A., Keihaninejad, S., Aljabar, P., Nielsen, C., Gray, K.R., Rueckert, D., Hajnal, J.V., Hammers, A.: Automatic morphometry in Alzheimer’s disease and mild cognitive impairment. Neuroimage 56(4), 2024–2037 (2011)CrossRefGoogle Scholar
  12. 12.
    Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. Imaging Vis. 50, 32–52 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.: Polynomial regression on Riemannian manifolds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 1–14. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33712-3_1 CrossRefGoogle Scholar
  14. 14.
    Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16(2), 81–121 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: CVPR (2010)Google Scholar
  16. 16.
    Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: CVPR (2014)Google Scholar
  17. 17.
    MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  18. 18.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Michor, P.W., Mumford, D.B.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8(1), 1–48 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Probl. 27(12) (2011)Google Scholar
  21. 21.
    Mumford, D.B.: Mathematical theories of shape: do they model perception? Proc. SPIE 1570, 2–10 (1991)CrossRefGoogle Scholar
  22. 22.
    Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pachauri, D., Hinrichs, C., Chung, M.K., Johnson, S.C., Singh, V.: Topology-based kernels with application to inference problems in Alzheimer’s disease. IEEE Trans. Med. Imaging 30(10), 1760–1770 (2011)CrossRefGoogle Scholar
  24. 24.
    Reininghaus, R., Bauer, U., Huber, S., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: CVPR (2015)Google Scholar
  25. 25.
    Shah, J.: An \(H^2\) Riemannian metric on the space of planar curves modulo similitudes. Adv. Appl. Math. 51(4), 483–506 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Turner, K., Mukherjee, S., Boyer, D.M.: Persistent homology transform for modeling shapes and surfaces. Inf. Inference 3(4), 310–344 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)CrossRefGoogle Scholar
  28. 28.
    Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval, pp. 87–119. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications, pp. 91–106. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recognit. 15(7), 43–90 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christoph Hofer
    • 1
    • 3
  • Roland Kwitt
    • 1
  • Marc Niethammer
    • 2
  • Yvonne Höller
    • 4
    • 5
  • Eugen Trinka
    • 3
    • 4
    • 5
  • Andreas Uhl
    • 1
  • for the ADNI
  1. 1.Department of Computer ScienceUniversity of SalzburgSalzburgAustria
  2. 2.UNC Chapel HillChapel HillUSA
  3. 3.Spinal Cord Injury and Tissue Regeneration Centre (SCI-TReCS) SalzburgParacelsus Medical UniversitySalzburgAustria
  4. 4.Department of Neurology, Christian Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
  5. 5.Centre for Cognitive NeuroscienceParacelsus Medical UniversitySalzburgAustria

Personalised recommendations