Skip to main content

VTrails: Inferring Vessels with Geodesic Connectivity Trees

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Abstract

The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale. In this paper we present an end-to-end approach to extract an acyclic vascular tree from angiographic data by solving a connectivity-enforcing anisotropic fast marching over a voxel-wise tensor field representing the orientation of the underlying vascular tree. The method is validated using synthetic and real vascular images. We compare VTrails against classical and state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field as proof of concept. VTrails performance is evaluated on images with different levels of degradation: we verify that the extracted vascular network is an acyclic graph (i.e. a tree), and we report the extraction accuracy, precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Annunziata, R., Kheirkhah, A., Hamrah, P., Trucco, E.: Scale and curvature invariant ridge detector for tortuous and fragmented structures. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 588–595. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_70

    Chapter  Google Scholar 

  2. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46, 1097 (2008)

    Article  Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56, 411–421 (2006)

    Article  Google Scholar 

  4. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92, 192–210 (2011)

    Article  Google Scholar 

  5. Bergman, R.A., Afifi, A.K., Miyauchi, R.: Illustrated encyclopedia of human anatomic variation: Circle of Willis. www.anatomyatlases.org/AnatomicVariants/

  6. Bullitt, E., Aylward, S., Liu, A., Stone, J., Mukherji, S.K., Coffey, C., Gerig, G., Pizer, S.M.: 3D graph description of the intracerebral vasculature from segmented MRA and tests of accuracy by comparison with x-ray angiograms. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 308–321. Springer, Heidelberg (1999). doi:10.1007/3-540-48714-X_23

    Chapter  Google Scholar 

  7. Cardoso, M.J., Modat, M., Vercauteren, T., Ourselin, S.: Scale factor point spread function matching: beyond aliasing in image resampling. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 675–683. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_81

    Chapter  Google Scholar 

  8. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  9. Gülsün, M.A., Funka-Lea, G., Sharma, P., Rapaka, S., Zheng, Y.: Coronary centerline extraction via optimal flow paths and CNN Path pruning. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 317–325. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_37

    Chapter  Google Scholar 

  10. Hamarneh, G., Jassi, P.: VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Comput. Med. Imag. Graph. 34, 605–616 (2010)

    Article  Google Scholar 

  11. Kwitt, R., Pace, D., Niethammer, M., Aylward, S.: Studying cerebral vasculature using structure proximity and graph kernels. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 534–541. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_66

    Chapter  Google Scholar 

  12. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  13. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)

    Article  Google Scholar 

  14. Lin, Q.: Enhancement, extraction, and visualization of 3D volume data (2003)

    Google Scholar 

  15. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson Higher Education, New York (2010)

    MATH  Google Scholar 

  16. Schaap, M., Manniesing, R., Smal, I., Walsum, T., Lugt, A., Niessen, W.: Bayesian tracking of tubular structures and its application to carotid arteries in CTA. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 562–570. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75759-7_68

    Chapter  Google Scholar 

  17. Wang, C., Oda, M., Hayashi, Y., Yoshino, Y., Yamamoto, T., Frangi, A.F., Mori, K.: Tensor-based graph-cut in riemannian metric space and its application to renal artery segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 353–361. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_41

    Chapter  Google Scholar 

  18. Zuluaga, M.A., Rodionov, R., Nowell, M., Achhala, S., Zombori, G., Mendelson, A.F., Cardoso, M.J., Miserocchi, A., McEvoy, A.W., Duncan, J.S., Ourselin, S.: Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning. Int. J. Comput. Assist. Radiol. Surg. 10, 1227–1237 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The study is co-funded from the EPSRC grant (EP/H046410/1), the Wellcome Trust and the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Moriconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moriconi, S., Zuluaga, M.A., Jäger, H.R., Nachev, P., Ourselin, S., Cardoso, M.J. (2017). VTrails: Inferring Vessels with Geodesic Connectivity Trees. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics