Skip to main content

HFPRM: Hierarchical Functional Principal Regression Model for Diffusion Tensor Image Bundle Statistics

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Abstract

Diffusion-weighted magnetic resonance imaging (MRI) provides a unique approach to understand the geometric structure of brain fiber bundles and to delineate the diffusion properties across subjects and time. It can be used to identify structural connectivity abnormalities and helps to diagnose brain-related disorders. The aim of this paper is to develop a novel, robust, and efficient dimensional reduction and regression framework, called hierarchical functional principal regression model (HFPRM), to effectively correlate high-dimensional fiber bundle statistics with a set of predictors of interest, such as age, diagnosis status, and genetic markers. The three key novelties of HFPRM include the simultaneous analysis of a large number of fiber bundles, the disentanglement of global and individual latent factors that characterizes between-tract correlation patterns, and a bi-level analysis on the predictor effects. Simulations are conducted to evaluate the finite sample performance of HFPRM. We have also applied HFPRM to a genome-wide association study to explore important genetic variants in neonatal white matter development.

Knickmeyer was partially supported by the National Institutes of Health grant MH083045.

Gilmore was partially supported by the National Institutes of Health grants MH064065, MH070890, and HD053000.

Styner was partially supported by the National Institutes of Health grant EB005149-01.

Zhu was partially supported by the National Institutes of Health grant MH086633, the National Science Foundation grants SES-1357666 and DMS-1407655, as well as a senior investigator grant from the Cancer Prevention Research Institute of Texas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/gene/238

  2. Bach, M., Laun, F.B., Leemans, A., Tax, C.M., Biessels, G.J., Stieltjes, B., Maier-Hein, K.H.: Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage 100, 358–369 (2014)

    Article  Google Scholar 

  3. Genomes Project Consortium, et al.: An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422), 56–65 (2012)

    Google Scholar 

  4. Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., Le Bihan, D.: Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30(4), 1121–1132 (2006)

    Article  Google Scholar 

  5. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  6. Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage 117, 124–140 (2015)

    Article  Google Scholar 

  7. Gilmore, J.H., Schmitt, J.E., Knickmeyer, R.C., Smith, J.K., Lin, W., Styner, M., Gerig, G., Neale, M.C.: Genetic and environmental contributions to neonatal brain structure: a twin study. Hum. Brain Mapp. 31(8), 1174–1182 (2010)

    Google Scholar 

  8. Goodlett, C.B., Fletcher, P.T., Gilmore, J.H., Gerig, G.: Group analysis of DTI fiber tract statistics with application to neurodevelopment. NeuroImage 45, S133–S142 (2009)

    Article  Google Scholar 

  9. Guevara, P., Poupon, C., Rivière, D., Cointepas, Y., Descoteaux, M., Thirion, B., Mangin, J.: Robust clustering of massive tractography datasets. NeuroImage 54(3), 1975–1993 (2011)

    Article  Google Scholar 

  10. Iwahara, T., Fujimoto, J., Wen, D., Cupples, R., Bucay, N., Arakawa, T., Mori, S., Ratzkin, B., Yamamoto, T.: Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14(4), 439–449 (1997)

    Article  Google Scholar 

  11. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  12. Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion mri with an application to genetics. NeuroImage 100, 75–90 (2014)

    Article  Google Scholar 

  13. Karhunen, K.: Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Finnicae Ser. A 1, 34 (1946)

    MathSciNet  MATH  Google Scholar 

  14. Liu, E.Y., Buyske, S., Aragaki, A.K., Peters, U., Boerwinkle, E., Carlson, C., Carty, C., Crawford, D.C., Haessler, J., Hindorff, L.A., et al.: Genotype imputation of metabochipsnps using a study-specific reference panel of 4,000 haplotypes in african americans from the women’s health initiative. Genet. Epidemiol. 36(2), 107–117 (2012)

    Article  Google Scholar 

  15. Liu, E.Y., Li, M., Wang, W., Li, Y.: Mach-admix: genotype imputation for admixed populations. Genet. Epidemiol. 37(1), 25–37 (2013)

    Article  Google Scholar 

  16. Loève, M.: Fonctions aléatoires à décomposition orthogonale exponentielle. La Revue Scientifique 84, 159–162 (1946)

    MathSciNet  MATH  Google Scholar 

  17. O’Donnell, L.J., Westin, C.F., Golby, A.J.: Tract-based morphometry for white matter group analysis. NeuroImage 45, 832–844 (2009)

    Article  Google Scholar 

  18. Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., Johnson, H.J., Styner, M.A.: DTIPrep: quality control of diffusion-weighted images. Front. Neuroinform. 8, 4 (2014)

    Article  Google Scholar 

  19. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D.: Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38(8), 904–909 (2006)

    Article  Google Scholar 

  20. Rice, J.A., Silverman, B.W.: Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. Ser. B (Methodol.) 53, 233–243 (1991). JSTOR

    MathSciNet  MATH  Google Scholar 

  21. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Article  Google Scholar 

  22. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., et al.: Advances in functional and structural mr image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  23. Verde, A.R., Budin, F., Berger, J.B., Gupta, A., Farzinfar, M., Kaiser, A., Ahn, M., Johnson, H.J., Matsui, J., Hazlett, H.C., et al.: UNC-Utah NA-MIC framework for DTI fiber tract analysis. Front. Neuroinform. 7, 51 (2014)

    Article  Google Scholar 

  24. Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.I.: The geometric structure of the brain fiber pathways. Science 335(6076), 1628–1634 (2012)

    Article  Google Scholar 

  25. Yao, F., Müller, H.G., Wang, J.L.: Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc. 100(470), 577–590 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuan, Y., Gilmore, J.H., Geng, X., Martin, S., Chen, K., Wang, J.I., Zhu, H.: FMEM: functional mixed effects modeling for the analysis of longitudinal white matter tract data. NeuroImage 84, 753–764 (2014)

    Article  Google Scholar 

  27. Yushkevich, P.A., Zhang, H., Simon, T.J., Gee, J.C.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41, 448–461 (2008)

    Article  MATH  Google Scholar 

  28. Zhu, H., Kong, L., Li, R., Styner, M., Gerig, G., Lin, W., Gilmore, J.H.: FADTTS: functional analysis of diffusion tensor tract statistics. NeuroImage 56(3), 1412–1425 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, J. et al. (2017). HFPRM: Hierarchical Functional Principal Regression Model for Diffusion Tensor Image Bundle Statistics. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics