Skip to main content

A Restaurant Process Mixture Model for Connectivity Based Parcellation of the Cortex

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

Abstract

One of the primary objectives of human brain mapping is the division of the cortical surface into functionally distinct regions, i.e. parcellation. While it is generally agreed that at macro-scale different regions of the cortex have different functions, the exact number and configuration of these regions is not known. Methods for the discovery of these regions are thus important, particularly as the volume of available information grows. Towards this end, we present a parcellation method based on a Bayesian non-parametric mixture model of cortical connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to make the distinction between physical fascicles and recovered tracts. Here, we define the latter to be the reconstructed tractography.

References

  1. Baldassano, C., Beck, D.M., Fei-Fei, L.: Parcellating connectivity in spatial maps. PeerJ 3, e784 (2015)

    Article  Google Scholar 

  2. Blei, D.M., Frazier, P.I.: Distance dependent Chinese restaurant processes. J. Mach. Learn. Res. 12(Aug), 2461–2488 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Clarkson, M.J., Malone, I.B., Modat, M., Leung, K.K., Ryan, N., Alexander, D.C., Fox, N.C., Ourselin, S.: A framework for using diffusion weighted imaging to improve cortical parcellation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 534–541. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9_65

    Chapter  Google Scholar 

  4. Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D.: Connectivity-based parcellation: critique and implications. Hum. Brain Mapp. 36(12), 4771–4792 (2015)

    Article  Google Scholar 

  5. Fischl, B.: Freesurfer. NeuroImage 2(62), 774–781 (2012)

    Article  Google Scholar 

  6. Fischl, B., et al.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)

    Article  Google Scholar 

  7. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8(8) (2014)

    Google Scholar 

  8. Hinne, M., et al.: Probabilistic clustering of the human connectome identifies communities and hubs. PLoS ONE 10(1), e0117179 (2015)

    Article  Google Scholar 

  9. Honnorat, N., et al.: GraSP: geodesic graph-based segmentation with shape priors for the functional parcellation of the cortex. NeuroImage 106, 207–221 (2015)

    Article  Google Scholar 

  10. Jbabdi, S., Woolrich, M.W., Behrens, T.E.J.: Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 44(2), 373–384 (2009)

    Article  Google Scholar 

  11. Johnson, M., et al.: Analyzing hogwild parallel Gaussian Gibbs sampling. In: Advances in Neural Information Processing Systems, pp. 2715–2723 (2013)

    Google Scholar 

  12. Kemp, C., et al.: Learning systems of concepts with an infinite relational model (2006)

    Google Scholar 

  13. Moyer, D., et al.: Mixed membership stochastic blockmodels for the human connectome. MICCAI-Workshop on Bayesian and Graphical Models for Biomedical Imaging 5, 6

    Google Scholar 

  14. Moyer, D., Gutman, B.A., Faskowitz, J., Jahanshad, N., Thompson, P.M.: A continuous model of cortical connectivity. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 157–165. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_19

    Chapter  Google Scholar 

  15. Parisot, S., Arslan, S., Passerat-Palmbach, J., Wells, W.M., Rueckert, D.: Tractography-driven groupwise multi-scale parcellation of the cortex. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 600–612. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_47

    Chapter  Google Scholar 

  16. Parisot, S., et al.: Group-wise parcellation of the cortex through multi-scale spectral clustering. NeuroImage 136, 68–83 (2016)

    Article  Google Scholar 

  17. Pitman, J., et al.: Combinatorial Stochastic Processes. Springer, Heidelberg (2002)

    Google Scholar 

  18. Ryali, S., et al.: A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. NeuroImage 65, 83–96 (2013)

    Article  Google Scholar 

  19. Smith, R.E., et al.: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 62(3), 1924–1938 (2012)

    Article  Google Scholar 

  20. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)

    Article  Google Scholar 

  21. Tournier, J.D., et al.: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage 42(2), 617–625 (2008)

    Article  Google Scholar 

  22. Van Essen, D.C, WU-Minn HCP Consortium et al.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Google Scholar 

  23. Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T.: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22(10), 2241–2262 (2012)

    Article  Google Scholar 

  24. Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Article  Google Scholar 

  25. Zilles, K., Amunts, K.: Centenary of Brodmann’s map–conception and fate. Nat. Rev. Neurosci. 11(2), 139–145 (2010)

    Article  Google Scholar 

  26. Zuo, X.N., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant U54 EB020403, as well as the NSF Graduate Research Fellowship Program. The authors would like to thank the reviewers as well as Greg Ver Steeg for multiple helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Moyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moyer, D., Gutman, B.A., Jahanshad, N., Thompson, P.M. (2017). A Restaurant Process Mixture Model for Connectivity Based Parcellation of the Cortex. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics