Topographic Regularity for Tract Filtering in Brain Connectivity

  • Junyan Wang
  • Dogu Baran Aydogan
  • Rohit Varma
  • Arthur W. Toga
  • Yonggang ShiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10265)


The preservation of the spatial relationships among axonal pathways has long been studied and known to be critical for many functions of the brain. Being a fundamental property of the brain connections, there is an intuitive understanding of topographic regularity in neuroscience but yet to be systematically explored in connectome imaging research. In this work, we propose a general mathematical model for topographic regularity of fiber bundles that is consistent with its neuroanatomical understanding. Our model is based on a novel group spectral graph analysis (GSGA) framework motivated by spectral graph theory and tensor decomposition. GSGA provides a common set of eigenvectors for the graphs formed by topographic proximity measures whose preservation along individual tracts in return is modeled as topographic regularity. To demonstrate the application of this novel measure of topographic regularity, we apply it to filter fiber tracts from connectome imaging. Using large-scale data from the Human Connectome Project (HCP), we show that our novel algorithm can achieve better performance than existing methods on the filtering of both individual bundles and whole brain tractograms.


  1. 1.
    Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7(1), 113–140 (2011)CrossRefGoogle Scholar
  2. 2.
    Thomas, C., Ye, F.Q., Irfanoglu, M.O., Modi, P., Saleem, K.S., Leopold, D.A., Pierpaoli, C.: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Nat. Acad. Sci. 111(46), 16574–16579 (2014)CrossRefGoogle Scholar
  3. 3.
    O’Donnell, L.J., Westin, C.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26(11), 1562–1575 (2007)CrossRefGoogle Scholar
  4. 4.
    Aydogan, D.B., Shi, Y.: Track filtering via iterative correction of TDI topology. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 20–27. Springer, Cham (2015). doi: 10.1007/978-3-319-24553-9_3 CrossRefGoogle Scholar
  5. 5.
    Patel, G.H., Kaplan, D.M., Snyder, L.H.: Topographic organization in the brain: searching for general principles. Trends Cogn. Sci. 18(7), 351–363 (2014)CrossRefGoogle Scholar
  6. 6.
    Engel, S.A., Glover, G.H., Wandell, B.A.: Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7(2), 181–192 (1997)CrossRefGoogle Scholar
  7. 7.
    Ebeling, U., Reulen, H.J.: Neurosurgical topography of the optic radiation in the temporal lobe. Acta Neurochir. 92(1), 29–36 (1988)CrossRefGoogle Scholar
  8. 8.
    Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., Villringer, A.: Somatotopic organization of human secondary somatosensory cortex. Cereb. Cortex 11(5), 463–473 (2001)CrossRefGoogle Scholar
  9. 9.
    Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., Zilles, K.: Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13(4), 684–701 (2001)CrossRefGoogle Scholar
  10. 10.
    Lehman, J.F., Greenberg, B.D., McIntyre, C.C., Rasmussen, S.A., Haber, S.N.: Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J. Neurosci. 31(28), 10392–10402 (2011)CrossRefGoogle Scholar
  11. 11.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.I.: The geometric structure of the brain fiber pathways. Science 335(6076), 1628–1634 (2012)CrossRefGoogle Scholar
  12. 12.
    Aydogan, D.B., Shi, Y.: Probabilistic tractography for topographically organized connectomes. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 201–209. Springer, Cham (2016). doi: 10.1007/978-3-319-46720-7_24 CrossRefGoogle Scholar
  13. 13.
    Thivierge, J.P., Marcus, G.F.: The topographic brain: from neural connectivity to cognition. Trends Neurosci. 30(6), 251–259 (2007)CrossRefGoogle Scholar
  14. 14.
    Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)CrossRefzbMATHGoogle Scholar
  15. 15.
    Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer Science & Business Media, Heidelberg (2011)zbMATHGoogle Scholar
  16. 16.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  18. 18.
    Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 14(4), 927–949 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Essen, D.V., Ugurbil, K., et al.: The Human Connectome Project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRefGoogle Scholar
  21. 21.
    Tran, G., Shi, Y.: Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans. Med. Imaging 34(11), 2320–2332 (2015)CrossRefGoogle Scholar
  22. 22.
    Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)CrossRefGoogle Scholar
  23. 23.
    Kammen, A., Law, M., Tjan, B.S., Toga, A.W., Shi, Y.: Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. NeuroImage 125, 767–779 (2016)CrossRefGoogle Scholar
  24. 24.
    Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: SIFT: spherical-deconvolution informed filtering of tractograms. NeuroImage 67, 298–312 (2013)CrossRefGoogle Scholar
  25. 25.
    Benson, N.C., Butt, O.H., Datta, R., Radoeva, P.D., Brainard, D.H., Aguirre, G.K.: The retinotopic organization of striate cortex is well predicted by surface topology. Curr. Biol.: CB 22(21), 2081–2085 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Junyan Wang
    • 1
  • Dogu Baran Aydogan
    • 1
  • Rohit Varma
    • 2
  • Arthur W. Toga
    • 1
  • Yonggang Shi
    • 1
    Email author
  1. 1.Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics InstituteKeck School of Medicine of University of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Ophthalmology, USC Roski Eye InstituteKeck School of Medicine of University of Southern CaliforniaLos AngelesUSA

Personalised recommendations