Skip to main content

Fundamental Equations of Acoustics

  • Chapter
  • First Online:
Computational Acoustics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 579))

Abstract

The equations of acoustics are based on the general equations of fluid dynamics: conservation of mass, momentum, energy and closed by the appropriate constitutive equation defining the thermodynamic state. The use of a perturbation ansatz, which decomposes the physical quantities density, pressure and velocity into mean, incompressible fluctuating and compressible fluctuating ones, allows to derive linearized acoustic conservation equations and its state equation. Thereby, we derive acoustic wave equations both for homogeneous and inhomogeneous media, and the equations model both vibrational- and flow-induced sound generation and its propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following, we will use both vector and index notation; for the main operations see Appendix.

  2. 2.

    For a detailed derivation of perturbation equations both for compressible as well as incompressible flows, we refer to Hüppe (2013).

References

  • Bécache, E., Givoli, D., & Hagstrom, T. (2010). High-order absorbing boundary conditions for anisotropic and convective wave equations. Journal of Computational Physics, 229(4), 1099–1129.

    Article  MathSciNet  MATH  Google Scholar 

  • Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114, 185–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Dumbser, M., & Munz, C.-D. (2005). ADER discontinuous Galerkin schemes for aeroacoustics. Comptes Rendus Mecanique, 333(9), 683–687.

    Article  MATH  Google Scholar 

  • Durst, F. (2006). Grundlagen der Strömungsmechanik. Berlin: Springer.

    MATH  Google Scholar 

  • Ewert, R., & Schröder, W. (2003). Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics, 188, 365–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, H. M., & Munz, C. D. (2016). Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror. Journal of Sound and Vibration, 371, 132–149.

    Article  Google Scholar 

  • Freund, J. B., Lele, S. K., & Moin, P. (2000). Direct numerical simulation of a Mach 1.92 turbulent jet and its sound field. AIAA Journal, 38, 2023–2031.

    Article  Google Scholar 

  • Givoli, D. (2008). Computational absorbing boundaries. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids (chapter 5) (pp. 145–166). Berlin: Springer.

    Google Scholar 

  • Hagstrom, T., & Warburton, T. (2009). Complete radiation boundary conditions: Minimizing the long time error growth of local methods. SIAM Journal on Numerical Analysis, 47(5), 3678–3704.

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin, J. C., & Hussaini, M. Y. (Eds.). (1992a). Computational aeroacoustics for low Mach number flows. Computational aeroacoustics (pp. 50–68). New York: Springer.

    Google Scholar 

  • Hardin, J. C., & Hussaini, M. Y. (Eds.). (1992b). Regarding numerical considerations for computational aeroacoustics. Computational aeroacoustics (pp. 216–228). New York: Springer.

    Google Scholar 

  • Hardin, J. C., & Pope, D. S. (1994). An acoustic/viscous splitting technique for computational aeroacoustics. Theoretical and Computational Fluid Dynamics, 6, 323–340.

    Article  MATH  Google Scholar 

  • Howe, M. S. (1998). Acoustics of fluid-structure interactions. Cambridge monographs on mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hüppe, A. (2013). Spectral finite elements for acoustic field computation. Ph.D. thesis, University of Klagenfurt, Austria, 2013.

    Google Scholar 

  • Ihlenburg, F. (1998). Finite element analysis of acoustic scattering. New York: Springer.

    Book  MATH  Google Scholar 

  • Lighthill, M. J. (1954). On sound generated aerodynamically II. Turbulence as a source of sound. Proceedings of the Royal Society of London, 222, 1–A22.

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London, A211, 564–587.

    Article  MathSciNet  MATH  Google Scholar 

  • Munz, C. D., Dumbser, M., & Roller, S. (2007). Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature. Journal of Computational Physics, 224, 352–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Rossing, T. D. (Ed.). (2007). Handbook of acoustics. Berlin: Springer.

    Google Scholar 

  • Schlichting, H., & Gersten, K. (2006). Grenzschicht-theorie (boundary layer theory). Berlin: Springer.

    MATH  Google Scholar 

  • Seo, J. H., & Moon, Y. J. (2005). Perturbed compressible equations for aeroacoustic noise prediction at low Mach numbers. AIAA Journal, 43, 1716–1724.

    Article  Google Scholar 

  • Shen, W. Z., & Sørensen, J. N. (1999). Aeroacoustic modelling of low-speed flows. Theoretical and Computational Fluid Dynamics, 13, 271–289.

    Article  MATH  Google Scholar 

  • Teixeira, F. L., & Chew, W. C. (2000). Complex space approach to perfectly layers: A review and some developments. International Journal of Numerical Modelling, 13, 441–455.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge his former Ph.D. student Andreas Hüppe for main contributions towards the derivations of the different aeroacoustic equations. Furthermore, many thanks to Stefan Schoder for proof reading and his usefull suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kaltenbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Kaltenbacher, M. (2018). Fundamental Equations of Acoustics. In: Kaltenbacher, M. (eds) Computational Acoustics. CISM International Centre for Mechanical Sciences, vol 579. Springer, Cham. https://doi.org/10.1007/978-3-319-59038-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59038-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59037-0

  • Online ISBN: 978-3-319-59038-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics