Sponge Disease and Climate Change



Reports of sponge disease have increased in recent years, impacting a wide range of species from tropical, temperate and freshwater environments. In this chapter, we provide a current overview of reported sponge diseases, focusing particularly on the symptoms of disease, the microbial shifts that occur in affected sponges and the identification of putative pathogens. In addition, we explore the potential role of climate-driven dysbiosis in disease aetiology.


Porifera Disease Microbial shifts Pathogens 



We thank Luis Sanchez, Manuel Maldonado, Julie Olson, Joana Xavier, Joe Pawlik, Hilde Angermeier, Igor Khanaev and Sergei Belikov for the provision of sponge disease images. NSW was funded through an Australian Research Council Future Fellowship FT120100480.


  1. Allemand-Martin A (1906) Étude de physiologie appliquée sur la spongiculture sur le côtes de Tunisie. Thèse, Univ, LyonGoogle Scholar
  2. Allemand-Martin A (1914) Contribution à l’étude de la culture des éponges. C r Ass Advmt Sci Tunis 42:375–377Google Scholar
  3. Angermeier H, Kamke J, Abdelmohsen UR et al (2011) The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiol Ecol 75:218–230. doi: 10.1111/j.1574-6941.2010.01001.x CrossRefPubMedGoogle Scholar
  4. Angermeier H, Glöckner V, Pawlik J et al (2012) Sponge white patch disease affecting the Caribbean sponge Amphimedon compressa. Dis Aquat Org 99:95–102. doi: 10.3354/dao02460 CrossRefPubMedGoogle Scholar
  5. Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Glob Change Biol 13:2078–2088. doi: 10.1111/j.1365-2486.2007.01423.x CrossRefGoogle Scholar
  6. Bennett HM, Altenrath C, Woods L et al (2016) Additive and antagonistic effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob Change Biol. doi: 10.1111/gcb.13474
  7. Blanquer A, Uriz MJ, Cebrian E, Galand PE (2016) Snapshot of a bacterial microbiome shift during the early symptoms of a massive sponge die-off in the Western Mediterranean. Front Microbiol 7:2588–2510. doi: 10.3389/fmicb.2016.00752 CrossRefGoogle Scholar
  8. Bourne DG, Morrow KM, Webster NS (2016) Coral Holobionts – insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340. doi: 10.1146/annurev-micro-102215-095440 CrossRefPubMedGoogle Scholar
  9. Brice JJ (1896) The fish and fisheries of the coastal waters of Florida. US Bureau of Fisheries. Rept Comm Fish 22:263–342Google Scholar
  10. Bruno JF, Petes LE, Drew Harvell C, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecology 6:1056–1061. doi: 10.1046/j.1461-0248.2003.00544.x Google Scholar
  11. Carter HJ (1878) Parasites of the Spongida. Ann Mag Nat Hist 2:157–172CrossRefGoogle Scholar
  12. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One 6:e20211. doi: 10.1371/journal.pone.0020211.t004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cerrano C, Magnino G, Sarà A et al (2001) Necrosis in a population of Petrosia ficiformis (Porifera, Demospongiae) in relation with environmental stress. Ital J Zool 68:131–136. doi: 10.1080/11250000109356397 CrossRefGoogle Scholar
  14. Cervino JM, Winiarski-Cervino K, Polson SW et al (2006) Identification of bacteria associated with a disease affecting the marine sponge Ianthella basta in New Britain, Papua New Guinea. Mar Ecol Prog Ser 324:139–150CrossRefGoogle Scholar
  15. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270. doi: 10.1038/nrg3182 PubMedPubMedCentralGoogle Scholar
  16. Choudhury JD, Pramanik A, Webster NS et al (2015) The pathogen of the Great Barrier Reef sponge Rhopaloeides odorabile is a new strain of Pseudoalteromonas agarivorans containing abundant and diverse virulence-related genes. Mar Biotechnol 17:463–478. doi: 10.1007/s10126-015-9627-y CrossRefPubMedGoogle Scholar
  17. Corriero G, Scalera-Liaci L, Rizzello R (1996) Osservazioni sulla mortalita di Ircinia spinosula (Schmidt) and Ircinia sp. (Porifera, Demospongiae) nell′ insenatura della Strea di Porto Cesareo. Thalassia Salent 22:51–62Google Scholar
  18. Cowart JD, Henkel TP, McMurray SE, Pawlik JR (2006) Sponge orange band (SOB): a pathogenic-like condition of the giant barrel sponge, Xestospongia muta. Coral Reefs 25:513–513. doi: 10.1007/s00338-006-0149-y
  19. Denikina NN, Dzyuba EV, Bel’kova NL et al (2016) The first case of disease of the sponge Lubomirskia baicalensis: investigation of its microbiome. Biol Bull Russ Acad Sci 43:263–270. doi: 10.1134/S106235901603002X CrossRefGoogle Scholar
  20. Di Camillo CG, Bartolucci I, Cerrano C, Bavestrello G (2013) Sponge disease in the Adriatic Sea. Mar Ecol 34:62–71. doi: 10.1111/j.1439-0485.2012.00525.x CrossRefGoogle Scholar
  21. Duckworth AR, Peterson BJ (2013) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata. Mar Biol 160:27–35. doi: 10.1007/s00227-012-2053-z CrossRefGoogle Scholar
  22. Economou E, Konteatis D (1988) Information on the sponge disease of 1986 in the waters of Cyprus. In: Report of Department of Fisheries, Ministry of Agriculture and Natural Resources, Cyprus. Ministry of Agriculture and Natural Resources, Republic of CyprusGoogle Scholar
  23. Fabricius KE, Langdon C, Uthicke S et al (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169. doi: 10.1038/nclimate1122 CrossRefGoogle Scholar
  24. Fabricius KE, Logan M, Weeks S, Brodie J (2014) The effects of river run-off on water clarity across the central Great Barrier Reef. Mar Pollut Bull 84:191–200. doi: 10.1016/j.marpolbul.2014.05.012 CrossRefPubMedGoogle Scholar
  25. Fan L, Reynolds D, Liu M et al (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci 109:E1878–E1887CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fan L, Liu M, Simister R et al (2013) Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J 7:991–1002. doi: 10.1038/ismej.2012.165 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fang JKH, Mello-Athayde MA, Schönberg CHL et al (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591. doi: 10.1111/gcb.12334 CrossRefGoogle Scholar
  28. Gaino E, Pronzato R (1989) Ultrastructural evidence of bacterial damage to Spongia officinalis fibres (Porifera, Demospongiae). Dis Aquat Org 6:67–74CrossRefGoogle Scholar
  29. Gaino E, Pronzato R, Corriero G, Buffa P (1992) Mortality of commercial sponges: incidence in two Mediterranean areas. Bolletino di zoologia 59:79–85. doi: 10.1080/11250009209386652 CrossRefGoogle Scholar
  30. Galstoff PS (1942) Wasting disease causing mortality of sponges in the West Indies and Gulf of Mexico. In: Proc VIII American Science Congress, vol 3, pp 411–421Google Scholar
  31. Galstoff PS, Brown HH, Smith CL, Walton Smith FG (1939) Sponge mortality in the Bahamas. Nature 143:807–808CrossRefGoogle Scholar
  32. Gammill ER, Fenner D (2005) Disease threatens Caribbean sponges: report and identification guide. In: ReefBase Online Library.
  33. Gao Z-M, Wang Y, Tian R-M et al (2015) Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 3:e890–e813. doi: 10.7717/peerj.890 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gashout SF, Haddud DA, El-Zintani AA, Elbare RMA (1989) Evidence for infection of Libyan sponge grounds. In: International seminar on the combat of pollution and the conservation of marine wealth in the Mediterranean Sea. Gulf of Sirte, Marine Biological Resources Centre, pp 100–113Google Scholar
  35. Gochfeld DJ, Schlöder C, Thacker RW (2007) Sponge community structure and disease prevalence on coral reefs in Bocas del Toro, Panama. In: Custódio MR (ed) Porifera research: biodiversity, innovation and sustainability. pp 335–343Google Scholar
  36. Gochfeld DJ, Easson CG, Freeman CJ et al (2012) Disease and nutrient enrichment as potential stressors on the Caribbean sponge Aplysina cauliformis and its bacterial symbionts. Mar Ecol Prog Ser 456:101–111. doi: 10.3354/meps09716 CrossRefGoogle Scholar
  37. Goodwin C, Rodolfo-Metalpa R, Picton B, Hall-Spencer JM (2013) Effects of ocean acidification on sponge communities. Mar Ecol 35:41–49. doi: 10.1111/maec.12093 CrossRefGoogle Scholar
  38. Haapkylä J, Seymour AS, Trebilco J, Smith D (2007) Coral disease prevalence and coral health in the Wakatobi Marine Park, south-east Sulawesi, Indonesia. J Mar Biol Assoc UK 87:403–414. doi: 10.1017/S0025315407055828 CrossRefGoogle Scholar
  39. Haapkylä J, Unsworth RKF, Flavell M et al (2011) Seasonal rainfall and runoff promote coral disease on an inshore reef. PLoS One 6:e16893. doi: 10.1371/journal.pone.0016893.t002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases--climate links and anthropogenic factors. Science 285:1505–1510. doi: 10.1126/science.285.5433.1505 CrossRefPubMedGoogle Scholar
  41. Harvell CD, Mitchell CE, Ward JR et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162. doi: 10.1126/science.1063699 CrossRefPubMedGoogle Scholar
  42. Harvell D, Altizer S, Cattadori IM et al (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90:1–9CrossRefGoogle Scholar
  43. Kaluzhnaya OV, Itskovich VB (2015) Bleaching of Baikalian sponge affects the taxonomic composition of symbiotic microorganisms. Russ J Genet 51:1153–1157. doi: 10.1134/S1022795415110071 CrossRefGoogle Scholar
  44. Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147:159–165. doi: 10.3354/meps147159 CrossRefGoogle Scholar
  45. Lafferty KD, Porter JW, Ford SE (2004) Are diseases increasing in the ocean? Annu Rev Ecol 35:31–34. doi: 10.2307/30034109 CrossRefGoogle Scholar
  46. Laffy PW, Charlson EW, Turaev D (2016) HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front Microbiol 7:822. doi: 10.3389/fmicb.2016.00822 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lemonie N, Buell N, Hill A, Hill M (2007) Assessing the utility of sponge microbial symbiont communities as models to study global climate change: a case study with Halichondria bowerbanki. In: Custódio MR (ed) Porifera research: biodiversity, innovation and sustainability. pp 419–425Google Scholar
  48. López-Legentil S, Song B, MCMURRAY SE, Pawlik JR (2008) Bleaching and stress in coral reef ecosystems: hsp70expression by the giant barrel sponge Xestospongia muta. Mol Ecol 17:1840–1849. doi: 10.1111/j.1365-294X.2008.03667.x CrossRefPubMedGoogle Scholar
  49. López-Legentil S, Erwin PM, Pawlik JR, Song B (2010) Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monooxygenase genes associated with the barrel sponge Xestospongia muta. Microb Ecol 60:561–571. doi: 10.1007/s00248-010-9662-1 CrossRefPubMedGoogle Scholar
  50. Luter HM, Whalan S, Webster NS (2010a) Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta. Appl Environ Microbiol 76:5736–5744. doi: 10.1128/AEM.00653-10 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Luter HM, Whalan S, Webster NS (2010b) Prevalence of tissue necrosis and brown spot lesions in a common marine sponge. Mar Freshw Res 61:484–489. doi: 10.1071/MF09200 CrossRefGoogle Scholar
  52. Luter HM, Whalan S, Webster NS (2012) Thermal and sedimentation stress are unlikely causes of brown spot syndrome in the coral reef sponge, Ianthella basta. PLoS One 7:e39779. doi: 10.1371/journal.pone.0039779 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luter HM, Gibb K, Webster NS (2014) Eutrophication has no short-term effect on the Cymbastela stipitata holobiont. Front Microbiol 5:216. doi: 10.3389/fmicb.2014.00216 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Maldonado M, Sánchez-Tocino L, Navarro C (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia: epidemic incidence and defense mechanisms. Mar Biol 157:1577–1590. doi: 10.1007/s00227-010-1431-7 CrossRefGoogle Scholar
  55. Morrow KM, Bourne DG, Humphrey C et al (2015) Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J 9:894–908. doi: 10.1038/ismej.2014.188 CrossRefPubMedGoogle Scholar
  56. Mukherjee J, Webster N, Llewellyn LE (2009) Purification and characterization of a collagenolytic enzyme from a pathogen of the Great Barrier Reef sponge, Rhopaloeides odorabile. PLoS One 4:e7177. doi: 10.1371/journal.pone.0007177.g002 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nagelkerken I, Aerts L, Pors L (2000) Barrel sponge bows out. In: Reef encounter. International Society for Reef Studies, Kansas, pp 14–15Google Scholar
  58. Olson JB, Gao X (2013) Characterizing the bacterial associates of three Caribbean sponges along a gradient from shallow to mesophotic depths. FEMS Microbiol Ecol 85:74–84. doi: 10.1111/1574-6941.12099 CrossRefPubMedGoogle Scholar
  59. Olson JB, Gochfeld DJ, Slattery M (2006) Aplysina red band syndrome: a new threat to Caribbean sponges. Dis Aquat Org 71:163–168CrossRefPubMedGoogle Scholar
  60. Osborne K, Dolman AM, Burgess SC, Johns KA (2011) Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS One 6:e17516. doi: 10.1371/journal.pone.0017516 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Paz M (1997) New killer disease attacks giant barrel sponge. In: San Pedro Sun, Belize: 7 March.
  62. Pineda MC, Duckworth A, Webster N (2015) Appearance matters: sedimentation effects on different sponge morphologies. J Mar Biol Assoc 96:481–492. doi: 10.1017/S0025315414001787 CrossRefGoogle Scholar
  63. Ribes M, Calvo E, Movilla J et al (2016) Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environ Microbiol Rep 8:427–546. doi: 10.1111/1758-2229.12430 CrossRefGoogle Scholar
  64. Rizzello R, Corriero G, Scalera-Liaci L et al (1997) Extinction and recolonization of Spongia officinalis in the Marsala Lagoon. Biol Mar Med 4:443–444Google Scholar
  65. Rützler K (1988) Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system? Dis Aquat Org 5:143–149CrossRefGoogle Scholar
  66. Saby E, Justesen J, Kelve M, Uriz MJ (2009) In vitro effects of metal pollution on Mediterranean sponges: species-specific inhibition of 2′,5′-oligoadenylate synthetase. Aquat Toxicol 94:204–210. doi: 10.1016/j.aquatox.2009.07.002 CrossRefPubMedGoogle Scholar
  67. Selvin J, Shanmugha Priya S, Seghal Kiran G et al (2007) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363. doi: 10.1016/j.micres.2007.05.005 CrossRefPubMedGoogle Scholar
  68. Simister R, Taylor MW, Tsai P et al (2012a) Thermal stress responses in the bacterial biosphere of the Great Barrier Reef sponge, Rhopaloeides odorabile. Environ Microbiol 14:3232–3246. doi: 10.1111/1462-2920.12010 CrossRefPubMedGoogle Scholar
  69. Simister R, Taylor MW, Tsai P, Webster N (2012b) Sponge-microbe associations survive high nutrients and temperatures. PLoS One 7:e52220. doi: 10.1371/journal.pone.0052220.t002 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Skoufas G (2003) Massive necrosis of sedentary benthic animal organisms in the North Aegean Sea. In: 7th Hellenic symposium on oceanography and fisheries. National Centre for Marine Research, ChersonissosGoogle Scholar
  71. Smith FGW (1941) Sponge disease in British Honduras, and its transmission by water currents. Ecology 22:415–421CrossRefGoogle Scholar
  72. Storr JF (1964) Ecology of the Gulf of Mexico commercial sponges and its relation to the fishery. In: Special Scientific Report. US Fisheries and Wildlife Service, Washington, pp 1–73Google Scholar
  73. Sweet M, Bulling M, Cerrano C (2015) A novel sponge disease caused by a consortium of micro-organisms. Coral Reefs 34:871–883. doi: 10.1007/s00338-015-1284-0 CrossRefGoogle Scholar
  74. Thomas T, Moitinho-Silva L, Lurgi M et al (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:1–12. doi: 10.1038/ncomms11870 Google Scholar
  75. Tian R-M, Wang Y, Bougouffa S et al (2014) Effect of copper treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. mBio 5:e01980–e01914. doi: 10.1128/mBio.01980-14 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Toren A, Landau L, Kushmaro A et al (1998) Effect of temperature on adhesion of Vibrio Strain AK-1 to Oculina patagonica and on coral bleaching. Appl Environ Microbiol 64:1379–1384PubMedPubMedCentralGoogle Scholar
  77. Vacelet J (1994) Control of the severe sponge epidemic – near East and Europe: Algeria, Cyprus, Egypt, Lebanon, Malta, Morocco, Syria, Tunisia, Turkey, Yugoslavia. In: Technical report: The struggle against the epidemic which is decimating Mediterranean sponges, FI:TCP/RAB/8853. Rome, pp 1–39Google Scholar
  78. Vacelet J, Vacelet E, Gaino E, Gallissian MF (1994) Bacterial attack of spongin skeleton during the 1986-1990 Mediterranean sponge disease. In: Van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. A.A. Balkema, Rotterdam, pp 355–362Google Scholar
  79. Vicente VP (1990) Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs 8:199–202CrossRefGoogle Scholar
  80. Vicente J, Silbiger NJ, Beckley BA et al (2015) Impact of high pCO2 and warmer temperatures on the process of silica biomineralization in the sponge Mycale grandis. ICES J Mar Sci 73:529–536. doi: 10.1093/icesjms/fsv235 Google Scholar
  81. Walton Smith FG (1939) Sponge mortality at British Honduras. Nature 143:785CrossRefGoogle Scholar
  82. Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375. doi: 10.1111/j.1462-2920.2007.01303.x CrossRefPubMedGoogle Scholar
  83. Webster NS, Blackhall LL (2008) What do we really know about sponge-microbial symbioses? ISME J 3:1–3. doi: 10.1038/ismej.2008.102 CrossRefPubMedGoogle Scholar
  84. Webster NS, Thomas T (2016) The sponge hologenome. mBio 7:e00135–e00116. doi: 10.1128/mBio.00135-16 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Webster NS, Webb RI, Ridd MJ et al (2001) The effects of copper on the microbial community of a coral reef sponge. Environ Microbiol 3:19–31. doi: 10.1046/j.1462-2920.2001.00155.x CrossRefPubMedGoogle Scholar
  86. Webster NS, Negri AP, Webb RI, Hill RT (2002) A spongin-boring α-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309CrossRefGoogle Scholar
  87. Webster NS, Cobb RE, Negri AP (2008a) Temperature thresholds for bacterial symbiosis with a sponge. ISME J 2:830–842. doi: 10.1038/ismej.2008.42 CrossRefPubMedGoogle Scholar
  88. Webster NS, Xavier JR, Freckelton M et al (2008b) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10:3366–3376. doi: 10.1111/j.1462-2920.2008.01734.x CrossRefPubMedGoogle Scholar
  89. Webster NS, Botte ES, Soo RM, Whalan S (2011) The larval sponge holobiont exhibits high thermal tolerance. Environ Microbiol Rep 3:756–762. doi: 10.1111/j.1758-2229.2011.00296.x CrossRefPubMedGoogle Scholar
  90. Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7:e45124. doi: 10.1371/journal.pone.0045124 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wulff JL (2006a) A simple model of growth form-dependent recovery from disease in coral reef sponges, and implications for monitoring. Coral Reefs 25:419–426CrossRefGoogle Scholar
  92. Wulff JL (2006b) Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biol Conserv 127:167–176CrossRefGoogle Scholar
  93. Wulff JL (2007) Disease prevalence and population density over time in three common Caribbean coral reef sponge species. J Mar Biol Assoc 87:1715–1720. doi: 10.1017/S002531540705881X CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia
  2. 2.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations