Bioeroding Sponges and the Future of Coral Reefs

  • Christine H. L. Schönberg
  • James Kar-Hei Fang
  • José Luis Carballo


Bioeroding sponges play a central role in carbonate cycling on corals reefs. They may respond differently to habitat deterioration than many other benthic invertebrates, because at some locations, their abundances increased after disturbance. We reviewed literature on these sponges in context of environmental change and provide meta-analyses at global level. A difficult taxonomy and scarce scientific expertise leave them inadequately studied, even though they are the best-known internal bioeroders. They are sheltered within the substrate they erode, appear to be comparatively resilient against environmental change and can have heat-resistant photosymbionts and ‘weedy’ traits, including multiple pathways to reproduce or disperse and fast growth and healing abilities. Especially temperature stress appears to disable calcifiers stronger than bioeroding sponges. Moreover, increases in bioeroding sponge abundances have been related to eutrophication and disturbances that led to coral mortality. Chemical sponge bioerosion is forecast to double with doubled partial pressure of carbon dioxide, but reduced substrate density may counteract this effect, as dominant sponges erode more in denser substrates. Case examples portray shifting impacts of bioeroding sponges with environmental change, with some reefs already being erosional. Most available data and the largest known species record are from the Caribbean. Data from the Coral Triangle and India are largely restricted to faunistic records. Red Sea, Japanese and cold-water reef bioeroding sponges are the least studied. We need more quality research on functions and interaction effects, about which we are still insufficiently informed. With many calcifiers increasingly failing and bioeroding sponges still doing well, at least at intermediate levels of local and global change, these sponges may continue to significantly affect coral reef carbonate budgets. This may transform them from valuable and necessary recyclers of calcium carbonate to problem organisms.


Bioerosion Porifera Coral reefs State of research Global change Ocean acidification 



I. Kötter supplied samples of the Red Sea Pione. M. Achlatis (University of Queensland), G. Heiss (Freie University Berlin), M. Jaini (Dakshin Foundation), J. Marlow (Victoria University), and M. Wisshak (Senckenberg Institute) contributed a photograph each of reef environments. R. van Soest provided advice on nomenclatural procedures. A. Chaves-Fonnegra, M. Hill, Y. Ise, J. Marlow and F. Moraes shared or discussed some of their recent observations. Data that were used in the faunistic record as ‘pers. obs.’ of CS were obtained during a visit at the Paris Natural History Museum funded by a Synthesis stipend and hosted by I. Domart-Coulon, a stay on the Ryukyu Islands funded by the Japan Society for the Promotion of Science hosted by M. Hidaka and R. Suwa, fieldwork conducted at the Australian Institute of Marine Science and observations of samples from the Western Australian Museum made accessible by J. Fromont and O. Gómez. Wound healing data of Mexican Cliona californiana were generated during fieldwork for the MSc thesis of L. Camacho. G. Moore assisted with radiographic imagery at the Western Australian Museum. D. Bellwood at James Cook University provided insights into parrotfish bioerosion. We thank E. Hajdu, F. Moraes, M. Ilan and J. Marlow to cross check our faunistic lists with their local species records and for giving us their permission the use of further unpublished data for Brazil, the Red Sea and Indonesia. A. Ereskovsky, I. Guibert, E. Hajdu, S. Morrison, D. Nacimento, M. Thollesson and P. Willenz sent literature that was difficult to obtain.


  1. Achlatis M, van der Zande RM, Schönberg CHL, Fang JKH, Hoegh-Guldberg O, Dove S (in press) Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Sci RepGoogle Scholar
  2. Acker KL, Risk MJ (1985) Substrate destruction and sediment production by the boring sponge Cliona caribbaea on Grand Cayman Island. J Sediment Petrol 55:705–711Google Scholar
  3. Aerts LA, van Soest RW (1997) Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Mar Ecol Prog Ser 148:125–134CrossRefGoogle Scholar
  4. Ainsworth TD, Heron SF, Ortiz JC, Mumby PJ, Grech A, Ogawa D, Eakin CM, Leggat W (2016) Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352:338–342PubMedCrossRefGoogle Scholar
  5. Alander H (1935) Additions to the Swedish sponge fauna. Ark Zool 28:1–6Google Scholar
  6. Alander H (1942) Sponges from the Swedish west-coast and adjacent waters. PhD thesis, University Gothenburg, Gothenburg, 95 pp, 16 plsGoogle Scholar
  7. Al-Sofyani AA, Floos YAM (2013) Effect of temperature on two reef-building corals Pocillopora damicornis and P. verrucosa in the Red Sea. Oceanologia 55:917–935CrossRefGoogle Scholar
  8. Althaus F, Hill N, Ferrari R, Edwards L, Przeslawski R, Schönberg CHL, Stuart-Smith R, Barrett N, Edgar G, Colquhoun J, Trn M, Jordan A, Rees T, Gowlett-Holmes K (2015) A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI Classification Scheme. PLoS One 10:e0141039PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alvarado JJ, Cortés J, Guzman H, Reyes-Bonilla H (2016) Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reefs. Mar Ecol 37:1088–1102CrossRefGoogle Scholar
  10. Alvarado JJ, Grassian B, Cantera-Kintz JR, Carballo JL, Londoño-Cruz E (2017) Coral reef bioerosion in the Eastern Tropical Pacific. In: Glynn PW, Manzello PD, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Netherlands, pp 369–403CrossRefGoogle Scholar
  11. Amaro M, Ramírez I (2011) Nuevos registros de esponjas (Porifera) para el Golfo de Cariaco, Venezuela. Bol Inst Oceanogr Venezuela 50:133–147Google Scholar
  12. Andersson AJ, Mackenzie FT (2011) Ocean acidification: setting the record straight. Biogeosci Discuss 8:6161–6190CrossRefGoogle Scholar
  13. Andréa BR, Batista D, Sampaio CLS, Muricy G (2007) Spongivory by juvenile angelfish (Pomacanthidae) in Salvador, Bahia State, Brazil. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research. Biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 131–137Google Scholar
  14. Angermeier H, Kamke J, Abdelmohsen UR, Krohne G, Pawlik JR, Lindquist NL, Hentschel U (2011) The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta. FEMS Microbiol Ecol 75:218–230PubMedCrossRefGoogle Scholar
  15. Angermeier H, Glöckner V, Pawlik JR, Lindquist NL, Hentschel U (2012) Sponge white patch disease affecting the Caribbean sponge Amphimedon compressa. Diseases Aquat Org 99:95CrossRefGoogle Scholar
  16. Annandale N (1907) Notes on freshwater sponges. VI. The midday siesta of Spongilla in the tropics. Rec Indian Mus 1:387Google Scholar
  17. Annandale N (1915a) Some sponges parasitic on Clionidae with further notes on that family. Rec Indian Mus 11:457–478, pl XXXIVGoogle Scholar
  18. Annandale N (1915b) Indian boring sponges of the family Clionidae. Rec Indian Mus 11:1–24, pl IGoogle Scholar
  19. Annandale N (1915c) Fauna of the Chilka Lake sponges. Mem Indian Mus Calcutta 5:21–55, pls III-VGoogle Scholar
  20. Annandale N (1920) Description of a clionid sponge parasitic in the shells of Bullinus prinsepii. Rec Geol Surv India 51:62–64Google Scholar
  21. Arndt W (1927) Kalk-und Kieselschwämme von Curaçao. Bijdr Dierk 25:133–158Google Scholar
  22. Australian National Coral Reef Task Force (2016) Only 7% of the Great Barrier Reef has avoided coral bleaching. Media release of the Australian National Coral Reef Task Force issued by the ARC Centre of Excellence for Coral Reef Studies. [6 June 2016]
  23. Ávila E, Riosmena-Rodríguez R, Hinojosa-Arango G (2012) Sponge–rhodolith interactions in a subtropical estuarine system. Helgol Mar Res 67:349–357CrossRefGoogle Scholar
  24. Azzini F, Calcinai B, Iwasaki N, Bavestrello G (2007a) A new species of Thoosa (Demospongiae, Hadromerida) excavating precious coral Corallium sp. from Midway. Ital J Zool 74:405–408CrossRefGoogle Scholar
  25. Azzini F, Calcinai B, Cerrano C; Bavestrello G & Pansini M (2007b) Sponges of the marine karst lakes and of the coast of the islands of Ha Long Bay (north Vietnam). In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research. Biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 157–164Google Scholar
  26. Baba T, Mleczko R, Burbidge D, Cummins PR, Thio HK (2008) The effect of the Great Barrier Reef on the propagation of the 2007 Solomon Islands tsunami recorded in northeastern Australia. Pure Appl Geophys 165:2003–2018CrossRefGoogle Scholar
  27. Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337CrossRefGoogle Scholar
  28. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741PubMedCrossRefGoogle Scholar
  29. Ball FW (1975) A survey of the marine organisms at Halape, Hawaii Valocanoes National Park. Halape Marine Survey Technical Report 10. University of Hawaii and Manoa, Honolulu, pp 1–51Google Scholar
  30. Baquero DR (2010) Caracterisacion estructural de la comunidad bentonica en el arrecife de Mahahual, Mexico. PhD thesis, Instituto Politecnico Nacional, La Paz, 117 ppGoogle Scholar
  31. Barbieri M, Bavestrello G, Sarà M (1995) Morphological and ecological differences in two electrophoretically detected species of Cliona (Porifera, Demospongiae). Biol J Linnean Soc 54:193–200Google Scholar
  32. Barletta G, Vighi M (1968) Ricerche sul corallo rosso. V. Poriferi perforanti lo sclerasse di Corallium rubrum Lamarck. Rend Ist Lombardo Sci Lett Milano B 102:145–159Google Scholar
  33. Barnes DKA, Bell JJ (2002) Coastal sponge communities of the West Indian Ocean: taxonomic affinities, richness and diversity. Afr J Ecol 40:37–349Google Scholar
  34. Barthelmy D (1997–2014) Webmineral. Mineralogy database. [6 June 2016]
  35. Barucca M, Azzini F, Bavestrello G, Biscotti MA, Calcinai B, Canapa A, Cerrano C, Olmo E (2007) The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis. Mar Biol 151:529–535CrossRefGoogle Scholar
  36. Bass D (1993) First report of Suberites undulatus (Demospongiae) from coastal waters of the Gulf of Maxico. Bull Mar Sci 52:843Google Scholar
  37. Batista D, Muricy GR, Andréa BR, Villaça RC (2012) High intraspecific variation in the diet of the french angelfish Pomacanthus paru in the south-western Atlantic. Braz J Oceanogr 60:449–454CrossRefGoogle Scholar
  38. Bautista-Guerrero E, Carballo JL, Cruz-Barraza JA, Nava HH (2006) New coral reef boring sponges (Hadromerida: Clionaidae) from the Mexican Pacific Ocean. J Mar Biol Assoc UK 86:963–970CrossRefGoogle Scholar
  39. Bautista-Guerrero E, Carballo JL, Maldonado M (2010) Reproductive cycle of the coral-excavating sponge Thoosa mismalolli (Clionaidae) from Mexican Pacific coral reefs. Invertebr Biol 129:285–296CrossRefGoogle Scholar
  40. Bautista-Guerrero E, Carballo JL, Maldonado M (2014) Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs? Coral Reefs 33:259–266CrossRefGoogle Scholar
  41. Bautista-Guerrero E, Carballo JL, Aguilar-Camacho JM, Sifuentes-Romero I (2016) Molecular and morphological differentiation of sympatric larvae of coral excavating sponges of genus Thoosa. Zoomorphology 135:159–165CrossRefGoogle Scholar
  42. Bavestrello G, Arillo A, Benati U, Cerrano C, Cattaneovietti R, Cortesogno L, Gaggero L, Giovine M, Tonetti M, Sarà M (1995) Quartz dissolution by the sponge Chondrosia reniformis (Porifera, Demospongiae). Nature 378:374–376CrossRefGoogle Scholar
  43. Bavestrello G, Calcinai B, Cerrano C, Pansini M, Sarà M (1996) The taxonomic status of some Mediterranean clionids (Porifera: Demospongiae) according to morphological and genetic characters. Bull Inst Royal Sci Nat Belgique Biol suppl 66:185–195Google Scholar
  44. Bavestrello G, Calcinai B, Cerrano C, Sarà M (1998) Alectona species from north-western Pacific (Demospongiae: Clionidae). J Mar Biol Assoc UK 78:59–73CrossRefGoogle Scholar
  45. Bavestrello G, Bo M, Canese S, Sandulli R, Cattaneo-Vietti R (2014) The red coral populations of the gulfs of Naples and Salerno: human impact and deep mass mortalities. Ital J Zool 81:552–563CrossRefGoogle Scholar
  46. Becker LC, Reaka-Kudla ML (1997) The use of tomography in assessing bioerosion in corals. In: Proceedings of the 8th international coral reef symposium, vol 2, Panama City, pp 1819–1824Google Scholar
  47. Becking LE, Cleary DFR, de Voogd NJ (2013) Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia. Mar Ecol Prog Ser 481:105–120CrossRefGoogle Scholar
  48. Beckley LE, Lombard AT (2012) A systematic evaluation of the incremental protection of broad-scale habitats at Ningaloo Reef, Western Australia. Mar Freshw Res 63:17–22CrossRefGoogle Scholar
  49. Beer S, Ilan M (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol 131:613–617CrossRefGoogle Scholar
  50. Bell JJ (2002) Regeneration rates of a sublittoral demosponge. J Mar Biol Assoc UK 82:169–170CrossRefGoogle Scholar
  51. Bell JJ, Davy SK, Jones T, Taylor MW, Webster N (2013) Could some coral reefs become sponge reefs as our climate changes? Glob Change Biol 19:613–2624CrossRefGoogle Scholar
  52. Bellwood DR (1985) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol 121:419–429CrossRefGoogle Scholar
  53. Bengtson P (1988) Open nomenclature. Palaeontology 31:223–227Google Scholar
  54. Benzoni F, Calcinai B, Eisinger M, Klaus R (2008) Coral disease mimic: sponge attacks Porites lutea in Yemen. Coral Reefs 27:695CrossRefGoogle Scholar
  55. Bergman KM (1983) The distribution and ecological significance if the boring sponge Cliona viridis on the Great Barrier Reef, Australia. MSc thesis, McMaster University, Hamilton, 69 ppGoogle Scholar
  56. Bergquist PR (1961) A collection of Porifera from northern New Zealand, with descriptions of seventeen new species. Pac Sci 15:33–48Google Scholar
  57. Bergquist PR (1965) The sponges of Micronesia, Part I. The Palau Archipelago. Pac Sci 19:123–204Google Scholar
  58. Bergquist PR (1967) Additions to the sponge fauna of the Hawaiian Islands. Micronesica 3:159–174Google Scholar
  59. Bergquist PR (1977) Porifera. In: Devaney DM, Eldredge LG (eds) Reef and shore fauna of Hawaii. Section 1: Protozoa through Ctenophora. Bishop Museum Press, Honolulu, pp 53–69Google Scholar
  60. Bergquist PR, Tizard CA (1967) Australian intertidal sponges from the Darwin area. Micronesica 3:175–202Google Scholar
  61. Bergquist PR, Morton JE, Tizard CA (1971) Some Demospongiae from the Solomon Islands with descriptive notes on the major sponge habitats. Micronesica 7:99–121Google Scholar
  62. Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83CrossRefGoogle Scholar
  63. Berman T, Paldor N, Brenner S (2003) Annual SST cycle in the Eastern Mediterranean, Red Sea and Gulf of Elat. Geophys Res Lett 30:1261CrossRefGoogle Scholar
  64. Bertolino M, Pica D, Bavestrello G, Iwasaki N, Calcinai B (2011) A new species of Triptolemma (Porifera: Pachastrellidae) from the Pacific Ocean with a revision of the genus. J Mar Biol Assoc UK 91:329–338CrossRefGoogle Scholar
  65. Bertolino M, Cerrano C, Bavestrello G, Carella M, Pansini M, Calcinai B (2013) Diversity of Porifera in the Mediterranean coralligenous accretions, with description of a new species. ZooKeys 336:1–37CrossRefGoogle Scholar
  66. Bertram GC (1936) Some aspects of the breakdown of coral at Ghardaqa, Red Sea. Proc Zool Soc Lond 106:1011–1026CrossRefGoogle Scholar
  67. Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JE, Khalil MT, Miyake S, Mughal MR, Spaet JL, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748CrossRefGoogle Scholar
  68. Beuck L, Freiwald A (2005) Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 915–936CrossRefGoogle Scholar
  69. Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O (2007) Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 53:157–176CrossRefGoogle Scholar
  70. Beuck L, Freiwald A, Taviani M (2010) Spatiotemporal bioerosion patterns in deep-water scleractinians from off Santa Maria di Leuca (Apulia, Ionian Sea). Deep Sea Res II Topical Stud Oceanogr 57:458–470CrossRefGoogle Scholar
  71. Bhagirathan U, Panda SK, Madhu VR, Meenakumari B (2008) Occurrence of live octocorals in the trawling grounds of Veraval Coast of Gujarat, Arabian Sea. Turkish J Fish Aquat Sci 8:369–372Google Scholar
  72. Bloom SA (1976) Morphological correlations between dorid nudibranch predators and sponge prey. Veliger 18:289–301Google Scholar
  73. Bo M, Bava S, Canese S, Angiolillo M, Cattaneo-Vietti R, Bavestrello G (2014) Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol Conserv 171:167–176CrossRefGoogle Scholar
  74. Borchiellini C, Alivon EL, Vacelet J (2004) The systematic position of Alectona (Porifera, Demospongiae): a tetractinellid sponge. Boll Mus Ist Biol Univ Genova 68:209–217Google Scholar
  75. Bosc LAG (1802) Histoire naturelle des éponges. Éponge pezize, Spongia peziza. Hist Nat Vers 3:147–148Google Scholar
  76. Boury-Esnault N (1971) Spongiaires de la zone rocheuse de Banyuls-sur-Mer. II. Systématique. Vie Milieu B 22:287–350Google Scholar
  77. Boury-Esnault N (1973) Résultats Scientifiques des Campagnes de la ‘Calypso’. Campagne de la ‘Calypso’ au large des côtes atlantiques de l’Amérique du Sud (1961-1962). I. 29. Spongiaires. Ann Institut Océanogr 49(Suppl 10):263–295Google Scholar
  78. Boury-Esnault N, Pansini M, Uriz MJ (1994) Spongiaires bathyaux de la mer d’Alboran et du golfe ibéro-marocain. Mém Mus Natl Hist Nat 160:1–174Google Scholar
  79. Boury-Esnault N, Klautau M, Bézac C, Wulff J, Solé-Cava AM (1999) Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. J Mar Biol Assoc UK 79:39–50CrossRefGoogle Scholar
  80. Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Grinyó J, Lopez-Sanz A, Martinez-Quintana A, Pelejero C, Ziveri P (2013) Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Glob Change Biol 19:1897–1908CrossRefGoogle Scholar
  81. Bramanti L, Vielmini I, Rossi S, Tsounis G, Iannelli M, Cattaneo-Vietti R, Priori C, Santangelo G (2014) Demographic parameters of two populations of red coral (Corallium rubrum L. 1758) in the North Western Mediterranean. Mar Biol 161:1015–1026CrossRefGoogle Scholar
  82. Brodie J, Waterhouse J (2016) Great Barrier Reef (Australia): a multi-ecosystem wetland with a multiple use management regime. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC (eds) The wetland book II: distribution, description and conservation. Springer, Dordrecht, pp 915–936Google Scholar
  83. Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23:169–197CrossRefGoogle Scholar
  84. Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Special Pub 228, London, pp 455–479Google Scholar
  85. Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv It Paleont Strat 90:227–296Google Scholar
  86. Brooke S, Ross SW, Bane JM, Seim HE, Young CM (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep Sea Res II Topical Stud Oceanogr 92:240–248CrossRefGoogle Scholar
  87. Bruckner AW (2009) Rate and extent of decline in Corallium (pink and red coral) populations: existing data meet the requirements for a CITES Appendix II listing. Mar Ecol Prog Ser 397:319–332CrossRefGoogle Scholar
  88. Bruckner AW, Dempsey AC (2015) The status, threats, and resilience of reef-building corals of the Saudi Arabian Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer, Berlin, pp 471–486Google Scholar
  89. Bruggemann JH, van Oppen MJH, Breeman AM (1994) Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41–55CrossRefGoogle Scholar
  90. Burton M (1934) Sponges. Great Barrier Reef Expedition (1928–1929). Rep Br Mus Nat Hist 4:513–614Google Scholar
  91. Büttner E, Siebler F (2013) The impact of simulated dredging on sponges of the East Australian coastal line. University of Stuttgart, Stuttgart, 70Google Scholar
  92. Caballero H, Rosales D, Alcalá A (2005) Estudio diagnóstico del arrecife coralino del Rincón de Guanabo, Ciudad de la Habana, Cuba. 1. Corales, gorgonáceos y esponjas. Rev Invest Mar 26:207–217 (same article in Rev Invest Mar 27:49–59 in 2006)Google Scholar
  93. Calcinai B, Cerrano C, Bavestrello G, Sarà M (1999) Biology of the massive symbiotic sponge Cliona nigricans (Porifera: Demospongiae) in the Ligurian Sea. Mem Queensl Mus 44:77–83Google Scholar
  94. Calcinai B, Cerrano C, Sarà M, Bavestrello G (2000) Boring sponges (Porifera, Demospongiae) from the Indian Ocean. Ital J Zool 67:203–219CrossRefGoogle Scholar
  95. Calcinai B, Bavestrello G, Cerrano C, Sarà M (2001) Boring sponges living into precious corals from the Pacific Ocean. Ital J Zool 68:153–160CrossRefGoogle Scholar
  96. Calcinai B, Cerrano C, Bavestrello G, Milanese M, Sarà M (2002) Il popolamento di spugne perforatrici di Corallium rubrum e die alcuni madreporari del Promontorio die Portofino. Boll Mus Ist Biol Univ Genova 64-65:53–59Google Scholar
  97. Calcinai B, Bavestrello G, Cerrano C (2004a) Bioerosion micro-patterns as diagnostic characteristics in boring sponges. Boll Mus Ist Biol Univ Genova 68:229–238Google Scholar
  98. Calcinai B, Azzini F, Bavestrello G, Iwasaki N, Cerrano C (2004b) Redescription of Alectona verticillata (Johnson) (Porifera, Alectonidae) boring into Japanese precious coral. Ital J Zool 71:337–339CrossRefGoogle Scholar
  99. Calcinai B, Bavestrello G, Cerrano C (2005) Excavating sponge species from the Indo-Pacific Ocean. Zool Stud 44:5–18Google Scholar
  100. Calcinai B, Azzini F, Bavestrello G, Cerrano C, Pansini M, Thung DC (2006) Boring sponges from the Ha Long Bay, Tonkin Gulf, Vietnam. Zool Stud 45:201–212Google Scholar
  101. Calcinai B, Azzini F, Bavestrello G, Gaggero L, Cerrano C (2007a) Excavating rates and boring pattern of Cliona albimarginata (Porifera: Clionaidae) in different substrata. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research. Biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 203–210Google Scholar
  102. Calcinai B, Cerrano C, Bavestrello G (2007b) Three new species and one re-description of Aka. J Mar Biol Assoc UK 87:1355–1365CrossRefGoogle Scholar
  103. Calcinai B, Cerrano C, Iwasaki N, Bavestrello G (2008a) Sponges boring into precious corals: an overview with description of a new species of Alectona (Demospongiae, Alectonidae) and a world-wide identification key for the genus. Mar Ecol 29:273–279CrossRefGoogle Scholar
  104. Calcinai B, Bavestrello G, Cerrano C, Gaggero L (2008b) Substratum microtexture affects the boring pattern of Cliona albimarginata (Clionaidae, Demospongiae). In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 204–211Google Scholar
  105. Calcinai B, Cerrano C, Iwasaki N, Bavestrello G (2010) Biodiversity and ecology of sponge boring into precious corals: a worldwide overview. In Bussoletti E, Cottingham D, Bruckner A, Roberts G, Sandulli R (eds) Proceedings of the International Workshop on Red Coral Science, Management, and Trade: Lessons from the Mediterranean, Naples. NOAA Technical Memorandum CRCP-13, Silver Spring, pp 165–171Google Scholar
  106. Calcinai B, Bertolino M, Bavestrello G, Montori S, Mori M, Pica D, Valisano L, Cerrano C (2015) Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction. A quantitative approach. Medit Mar Sci 16:413–418CrossRefGoogle Scholar
  107. Callahan MK (2005) Distribution of clionid sponges in the Florida Keys National Marine Sanctuary (FKNMS), 2001–2003. PhD thesis, University of South Florida, 79 ppGoogle Scholar
  108. Cantera K, Jaime R, Orozco C, Londoño-Cruz E, Toro-Farmer G (2003) Abundance and distribution patterns of infaunal associates and macroborers of the branched coral (Pocillopora damicornis) in Gorgona Island (Eastern Tropical Pacific). Bull Mar Sci 72:207–219Google Scholar
  109. Carballo JL, Cruz-Barraza JA (2005) Cliona microstrongylata, a new species of boring sponge from the Sea of Cortés (Pacific Ocean, México). Cah Biol Mar 46:379–387Google Scholar
  110. Carballo JL, Nava H (2007) A comparison of sponge assemblage patterns in two adjacent rocky habitats (tropical Pacific Ocean, Mexico). Ecoscience 14:92–102CrossRefGoogle Scholar
  111. Carballo JL, Sanchez-Moyano JE, García-Gómez JC (1994) Taxonomic and ecological remarks on boring sponges (Clionidae) from the Straits of Gibraltar (southern Spain): tentative bioindicators? Zool J Linnean Soc 112:407–424CrossRefGoogle Scholar
  112. Carballo JL, Naranjo SA, García-Gómez JC (1996) Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (Southern Iberian Peninsula). Mar Ecol Prog Ser 135:109–122CrossRefGoogle Scholar
  113. Carballo JL, Cruz-Barraza JA, Gomez P (2004) Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zool J Linnean Soc Lond 141:353–397CrossRefGoogle Scholar
  114. Carballo JL, Hepburn L, Nava HH, Cruz-Barraza JA, Bautista-Guerrero E (2007) Coral boring Aka-species (Porifera: Phloeodictyidae) from Mexico with description of Aka cryptica sp. nov. J Mar Biol Assoc UK 87:1477–1484CrossRefGoogle Scholar
  115. Carballo JL, Cruz-Barraza JA, Nava H, Bautista E (2008a) Esponjas perforadoras de sustratos calcáreos: importancia en los ecosistemas arrecifales del Pacifico este. CONABIO, México City, 187 ppGoogle Scholar
  116. Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008b) Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar Ecol Prog Ser 356:113–122CrossRefGoogle Scholar
  117. Carballo JL, Bautista E, Nava H, Cruz-Barraza JA, Chávez JA (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 3:872–886PubMedPubMedCentralCrossRefGoogle Scholar
  118. Carballo JL, Ovalle-Beltrán H, Yáñez B, Bautista-Guerrero E, Nava-Bravo H (2016) Assessment of the distribution of sponge chips in the sediment of East Pacific Ocean reefs. Mar Ecol 38:e12390CrossRefGoogle Scholar
  119. Carpenter RC (1988) Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. PNAS 85:511–514PubMedPubMedCentralCrossRefGoogle Scholar
  120. Carreiro-Silva M, McClanahan TR (2012) Macrobioerosion of dead branching Porites, 4 and 6 years after coral mass mortality. Mar Ecol Prog Ser 458:103–122CrossRefGoogle Scholar
  121. Carricart-Ganivet JP, Vásquez-Bedoya LF, Cabanillas-Terán N, Blanchon P (2013) Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea. Coral Reefs 32:769–777CrossRefGoogle Scholar
  122. Carter HJ (1874) Descriptions and figures of deep-sea sponges and their spicules from the Atlantic Ocean, dredged up on board H.M.S. ‘Porcupine’, chiefly in 1869; with figures and descriptions of some remarkable spicules from the Agulhas Shoal and Colon, Panama. Ann Mag Nat Hist 14:207–221, 245–257, pls XIII–XVGoogle Scholar
  123. Carter HJ (1879) Contributions to our knowledge of the Spongida. Ann Mag Nat Hist 3:284–304, 343–360, pls XXV–XXVIIGoogle Scholar
  124. Carter HJ (1880) Report on specimens dredged up from the Gulf of Manaar and presented to the Liverpool Free Museum by Capt. W.H. Cawne Warren. Ann Mag Nat Hist 6:35–61, pls IV–VI; 129–156, pls VII, VIIIGoogle Scholar
  125. Carter HJ (1881) Supplementary report on specimens dredged up from the Gulf of Manaar, together with others from the sea in the vicinity of the Basse Rocks and from Bass’s Straits respectively, presented to the Liverpool Free Museum by Capt. H. Cawne Warren. Ann Mag Nat Hist 7:361–385, pl XVIIIGoogle Scholar
  126. Carter HJ (1882) Some sponges from the West Indies and Acapulco in the Liverpool Free Museum described, with general and classificatory remarks. J Nat Hist 9:266–301, 346–368, pls XI–XIIGoogle Scholar
  127. Carter HJ (1887) Report on the marine sponges, chiefly from King Island, in the Mergui Archipelago, collected for the trustees of the Indian Museum, Calcutta, by Dr. John Anderson, F.R.S., superintendent of the museum. J Linnean Soc Zool 21:61–84, pls 5–7Google Scholar
  128. Carvalho MD, Hajdu E, Mothes B, van Soest RW (2004) Amorphinopsis (Halichondrida: Demospongiae) from the Atlantic Ocean, with the description of a new species. J Mar Biol Assoc 84:925–930CrossRefGoogle Scholar
  129. Carver CE, Thériault I, Mallet AL (2010) Infection of cultured eastern oysters Crassostrea virginica by the boring sponge Cliona celata, with emphasis on sponge life history and mitigation strategies. J Shellfish Res 29:905–915CrossRefGoogle Scholar
  130. Cavalcanti HGB (2013) Taxonomia de esponjas marinhas do litoral norte de Pernambuco. MSc thesis, Federal University of Pernambuco, Recife, p 70Google Scholar
  131. Cebrian E (2010) Grazing on coral reefs facilitates growth of the excavating sponge Cliona orientalis (Clionaidae, Hadromerida). Mar Ecol 31:533–538CrossRefGoogle Scholar
  132. Cebrian E, Uriz MJ (2006) Grazing on fleshy seaweeds by sea urchins facilitates sponge Cliona viridis growth. Mar Ecol Prog Ser 323:83–89CrossRefGoogle Scholar
  133. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sarà G, Schiaparelli S, Siccardi A (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  134. Cerrano C, Bavestrello G, Bianchi CN, Calcinai B, Cattaneo-Vietti BR, Morri C, Sarà M (2001) The role of sponge bioerosion in Mediterranean coralligeneous accretions. In: Faranda FM, Letterio G, Spezie G (eds) Mediterranean ecosystems. Structures and processes. Springer, Italy, pp 235–240CrossRefGoogle Scholar
  135. Cerrano C, Bavestrello G, Boyer M, Calcinai B, Lalamentik LTX, Pansini M (2002) Psammobiontic sponges from the Bunaken Marine Park (North Sulawesi, Indonesia): interactions with sediments. In: Proceedings of the 9th international coral reef symposium, vol 1, Bali, pp 279–282Google Scholar
  136. Cerrano C, Sambolino P, Azzini F, Calcinai B, Bavestrello G (2007) Growth of the massive morph of Cliona nigricans (Schmidt 1862) (Porifera, Clionaidae) on different mineral substrata. Ital J Zool 74:13–19CrossRefGoogle Scholar
  137. Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:srep01457Google Scholar
  138. Chaves-Fonnegra A, Zea S (2007) Observations on reef coral undermining by the Caribbean excavating sponge Cliona delitrix (Demospongiae, Hadromerida). Porifera research: biodiversity, innovation and sustainability. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research. Biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 247–264Google Scholar
  139. Chaves-Fonnegra A, Zea S (2011) Coral colonization by the encrusting excavating Caribbean sponge Cliona delitrix. Mar Ecol 32:162–173CrossRefGoogle Scholar
  140. Chaves-Fonnegra A, Castellanos L, Zea S, Duque C, Rodríguez J, Jiménez C (2008) Clionapyrrolidine A – a metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact. J Chem Ecol 34:1565–1574PubMedCrossRefGoogle Scholar
  141. Chaves-Fonnegra A, Feldheim KA, Secord J, Lopez JV (2015) Population structure and dispersal of the coral-excavating sponge Cliona delitrix. Mol Ecol 24:1447–1466PubMedCrossRefGoogle Scholar
  142. Chavez-Fonnegra A, López-Victoria M, Parra-Velandia F, Zea S (2005) Ecología química de las esponjas excavadoras Cliona aprica, C. caribbaea, C. delitrix y C. tenuis. Bol Invest Mar Cost 34:43–67Google Scholar
  143. Chavez-Fonnegra A, Zea S, Gómez ML (2007) Abundance of the excavating sponge Cliona delitrix in relation to sewage discharge at San Andres Island, sw Caribbean, Colombia. Bol Invest Mar Cost 36:63–78Google Scholar
  144. Chavez-Fonnegra A, Maldonado M, Blackwelder P, Lopez JV (2016) Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J Mar Biol Assoc UK 96:515–528CrossRefGoogle Scholar
  145. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeogr Palaeoclimatol Palaeoecol 113:189–198CrossRefGoogle Scholar
  146. Chen T, Li S, Yu K (2013) Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development. Coral Reefs 32:101–108CrossRefGoogle Scholar
  147. Chervyakova NA (2007) Porifera (Demospongia) of the Nhatrang bay. In: Britayev TA, Pavlov DS (eds) Benthic fauna of the Bay of Nhatrang, Southern Vietnam. KMK Scientific Press, Moscow, pp 235–249Google Scholar
  148. Chiappone M, Rutten LM, Miller SL, Swanson DW (2007) Large-scale distributional patterns of the encrusting and excavating sponge Cliona delitrix Pang on Florida Keys coral substrates. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research. Biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 255–263Google Scholar
  149. Clark T, Morton B (1999) Relative roles of bioerosion and typhoon-induced disturbance on the dynamics of a high latitude scleractinian coral community. J Mar Biol Assoc UK 79:803–820CrossRefGoogle Scholar
  150. Cobb WR (1969) Penetration of calcium carbonate substrates by the boring sponge, Cliona. Am Zool 9:783–790CrossRefGoogle Scholar
  151. Cobb WR (1975) Fine structural features of destruction of calcareous substrata by the burrowing sponge Cliona celata. Trans Am Micros Soc 94:197–202CrossRefGoogle Scholar
  152. Coles SL, Bolick H (2007) Invasive introduced sponge Mycale grandis overgrows reef corals in Kāne‘ohe Bay, O‘ahu, Hawai‘i. Coral Reefs 26:911CrossRefGoogle Scholar
  153. Colgan M (1990) El Niño and the history of Eastern Pacific reef building. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 183–232CrossRefGoogle Scholar
  154. Collin C, Díaz MC, Norenburg J, Rocha RM, Sánchez JA, Schulze A, Schwartz M, Valdés A (2005) Photographic identification guide to some common marine invertebrates of Bocas del Toro, Panama. Carib J Sci 41:638–707Google Scholar
  155. Coraltraits (2016) Coral trait databace. Available from: [6 June 2016]
  156. Corredor JE, Wilkinson CR, Vicente VP, More JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–122CrossRefGoogle Scholar
  157. Corriero G, Abbiati M, Santangelo G (1997) Sponges inhabiting a Mediterranean red coral population. Mar Ecol 18:147–155CrossRefGoogle Scholar
  158. Cortés J (1992) Los arrecifes coralinos de Golfo Dulce, Costa Rica: aspectos ecológicos. Rev Biol Trop 40:19–26Google Scholar
  159. Cortés J (1993) Comparison between Caribbean and eastern Pacific coral reefs. Rev Biol Trop 41:19–21Google Scholar
  160. Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:39–46CrossRefGoogle Scholar
  161. Cortés J, Reyes-Bonilla H (2017) Human influences on Eastern Tropical Pacific coral communities and coral reefs. In: Glynn PW, Manzello PD, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Netherlands, pp 549–563CrossRefGoogle Scholar
  162. Cortés J, Enochs IC, Sibaja-Cordero J, Hernández L, Alvarado JJ, Breedy O, Cruz-Barrazza JA, Esquivel-Garrote O, Fernández-García C, Hermosillo A, Kaiser KL, Medina-Rosas P, Morales-Ramírez A, Pacheco C, Pérez-Matus A, Reyes-Bonilla H, Riosmena-Rodríguez R, Sánchez-Noguea C, Wieters EA, Zapata FA (2017) Marine biodiversity of Eastern Tropical Pacific reefs. In: Glynn PW, Manzello PD, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Netherlands, pp 203–250CrossRefGoogle Scholar
  163. Cramer KL, Jackson JB, Angioletti CV, Leonard-Pingel J, Guilderson TP (2012) Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol Lett 15:561–567PubMedCrossRefGoogle Scholar
  164. Cruz Simó T (2002) Esponjas marinas de Canarias. Consejeria de Politica Territorial y Medio Ambiente, Canary Islands, 260 pGoogle Scholar
  165. Cruz T, Bacallado JJ (1983) Esponjas perforantes (Porifera, Clionidae) de Tenerife, Islas Canarias. Vierea 12:37–48Google Scholar
  166. Cruz-Barraza JA, Carballo JL, Bautista-Guerrero E, Nava H (2011) New species of excavating sponges (Porifera: Demospongiae) on coral reefs from the Mexican Pacific Ocean. J Mar Biol Assoc UK 91:999–1013CrossRefGoogle Scholar
  167. Cuevas E, de los Ángeles Liceaga-Correa M, Garduño-Andrade M (2007) Spatial characterization of a foraging area for immature hawksbill turtles (Eretmochelys imbricata) in Yucatan, Mexico. Amphib Rept 28:337–346Google Scholar
  168. Daume S, Fromont J, Parker F, Davidson M, Murphy D, Hart A (2010) Quantifying sponge erosions in Western Australian pearl oyster shells. Aquac Res 41:e260–e267CrossRefGoogle Scholar
  169. Davies AJ, Wisshak M, Orr JC, Roberts JM (2008) Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep Sea Res I Oceanogr Res Papers 55:1048–1062CrossRefGoogle Scholar
  170. Davis KA, Lentz SJ, Pineda J, Farrar JT, Starczak VR, Churchill JH (2011) Observations of the thermal environment on Red Sea platform reefs: a heat budget analysis. Coral Reefs 30:25–36CrossRefGoogle Scholar
  171. Dawydoff C (1952) Contribution à l’Étude des Invertébrés de la faune marine benthique de Indochine. Suppl Bull Biol France Belg 37:1–155Google Scholar
  172. De Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC (2008) Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria- containing coral reef sponge Halisarca caerulea: evidence for DOM feeding. Limnol Oceanogr 53:1376–1386CrossRefGoogle Scholar
  173. De Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110PubMedCrossRefGoogle Scholar
  174. De Lamarck JBPA de Monet (1815) Sur les polypiers empâtés. Mém Mus Nat Hist Nat Paris 1:69–80, 162–168, 331–340Google Scholar
  175. De Laubenfels MW (1932) The marine and fresh-water sponges of California. Proc US Natl Mus 81:1–140CrossRefGoogle Scholar
  176. De Laubenfels MW (1934) New sponges from the Puerto Rican deep. Smithsonian Misc Coll 91:1–28Google Scholar
  177. De Laubenfels MW (1935) A collection of sponges from Puerto Galera, Mindoro, Philippine Islands. Philipp J Sci 56:327–337, 1 plGoogle Scholar
  178. De Laubenfels MW (1936a) A comparison of the shallow-water sponges near the Pacific end of the Panama Canal with those at the Caribbean end. Proc US Natl Mus 83:441–466CrossRefGoogle Scholar
  179. De Laubenfels MW (1936b) A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in general, with material for a revision of the families and orders of the Porifera. Carnegie Inst Washington Publ 467 (Tortugas Lab Paper 30):1–225, pls 1–22Google Scholar
  180. De Laubenfels MW (1939) Sponges collected on the presidential cruise of 1938. Smithsonian Misc Coll 98:1–7CrossRefGoogle Scholar
  181. De Laubenfels MW (1949) Sponges of the western Bahamas. Am Mus Novit 1431:1–25Google Scholar
  182. De Laubenfels MW (1950a) The Porifera of the Bermuda Archipelago. Trans Zool Soc Lond 27:1–153CrossRefGoogle Scholar
  183. De Laubenfels MW (1950b) The Sponges of Kaneohe Bay, Oahu. Pac Sci 4:3–36Google Scholar
  184. De Laubenfels MW (1951) The sponges of the Island of Hawaii. Pac Sci 5:256–271Google Scholar
  185. De Laubenfels MW (1953) Sponges from the Gulf of Mexico. Bull Mar Sci Gulf Caribb 2:511–557Google Scholar
  186. De Laubenfels MW (1954) The sponges of the West-Central Pacific. Oregon State Monogr Stud Zool 7:1–320Google Scholar
  187. De Laubenfels MW (1956) Preliminary discussion of the sponges of Brasil. Contrib Avul Inst Oceanogr São Paulo 1:1–4Google Scholar
  188. De Paula TS, Zilberberg C, Hajdu E, Lôbo-Hajdu G (2012) Morphology and molecules on opposite sides of the diversity gradient: four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol Phyl Evol 62:529–541CrossRefGoogle Scholar
  189. De Voogd NJ, Cleary DFR (2009) Variation in sponge composition among Singapore reefs. Raffles Bull Zool Suppl 22:59–67Google Scholar
  190. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109:17995–17999PubMedPubMedCentralCrossRefGoogle Scholar
  191. De'ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119PubMedCrossRefGoogle Scholar
  192. DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10CrossRefGoogle Scholar
  193. Dendy A (1887) The Sponge-fauna of Madras. A report on a collection of sponges obtained in the neighbourhood of Madras by Edgar Thurston, Esq. Ann Mag Nat Hist 20:153–165. pls IX–XIICrossRefGoogle Scholar
  194. Dendy A (1897) Catalogue of Non-Calcareous Sponges collected by J. Bracebridge Wilson, Esq., M.A., in the neighbourhood of Port Phillip Heads. Part III. Proc R Soc Vict New Ser 9:230–259Google Scholar
  195. Dendy A (1905) Report on the sponges collected by Professor Herdman, at Ceylon, in 1902. In: Herdman WA (ed), Report to the government of Ceylon on the pearl oyster fisheries of the Gulf of Manaar. Royal Soc Suppl Report 3, suppl 18:57–246, pls I–XVIGoogle Scholar
  196. Dendy A (1916) Report on the non-calcareous sponges collected by Mr. James Hornell at Okhamandal in Kattiawar in 1905–6. Report to the Government of Baroda on the Marine Zoology of Okhamandal in Kattiawar. 2:93–146, pls I–IVGoogle Scholar
  197. Dendy A (1922) Report on the Sigmatotetraxonida collected by H.M.S. ‘Sealark’ in the Indian Ocean. Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 1905. Volume 7. Trans Linn Soc London Zool 18:1–164, pls 1–18Google Scholar
  198. Dendy A, Frederick LM (1924) On a collection of sponges from the Abrolhos Islands, Western Australia. Zool J Linnean Soc London 35:477–519CrossRefGoogle Scholar
  199. Desqueyroux-Faúndez R (1981) Révision de la collection d’éponges d’Amboine (Moluques, Indonésie) constituée par Bedot et Pictet et conserve au Muséum d’histoire naturelle de Genève. Rev Suisse Zool 88:723–764CrossRefGoogle Scholar
  200. Desqueyroux-Faúndez R (1990) Spongiaires (Demospongiae) de l’Île de Pâques (Isla de Pascua). Rev Suisse Zool 97:373–409CrossRefGoogle Scholar
  201. Desqueyroux-Faúndez R, Valentine C (2002) Family Phloeodictyidae Carter, 1882. In: Hooper JNA, van Soest RWM (eds) Systema Porifera. A guide to the classification of sponges, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 893–905Google Scholar
  202. Desqueyroux-Faúndez R, van Soest RWM (1997) Shallow water demosponges of the Galápagos Islands. Rev Suisse Zool 104:379–467CrossRefGoogle Scholar
  203. Díaz MC (2005) Common sponges from shallow marine habitats from Bocas del Toro region, Panama. Caribb J Sci 41:465–475Google Scholar
  204. Díaz MC, Rützler K (2007) Biodiversity and abundance of sponges in Caribbean mangrove: indicators of environmental quality. Smithsonian Contrib Mar Sci 38:151–172Google Scholar
  205. Díaz MC, Zea S (2008) Distribución de esponjas sobre la plataforma continental de La Guajira, Caribe Colombiano. Bol Invest Mar Cost 37:27–43Google Scholar
  206. Díaz MC, Alvarez B, Laughlin RA (1990) The sponge fauna on a fringing coral reef in Venezuela II: community structure. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, pp 367–375Google Scholar
  207. Díaz MC, Thacker RW, Rützler K, Piantoni C (2007) Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research. Biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 31–39Google Scholar
  208. DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Howard Choat J, Gaither MR, Hobbs JP, Khalil MT, Kochzius M, Myers RF, Paulay G, Robitzch VSN, Seanz-Agudelo P, Salas E, Sinclair-Taylor TH, Toonen RJ, Westneat MW, Williams ST, Berumen ML (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
  209. Dickinson MG (1945) Sponges of the Gulf of California. Reports on the collections obtained by Alan Hancock Pacific Expeditions of Velero III off the coast of Mexico, Central America, South America, and Galapagos Islands in 1932, in 1933, in 1934, in 1935, in 1936, in 1937, in 1939, and 1940. The University of Southern California Press, Los Angeles, pp 1–55, pls 1–97Google Scholar
  210. Diez ME, Vázquez N, Urteaga D, Cremonte F (2014) Species associations and environmental factors influence activity of borers on Ostrea puelchana in northern Patagonia. J Moll Stud:eyu035Google Scholar
  211. Doroudi MS (1996) Infestation of pearl oysters by boring and fouling organisms in the northern Persian Gulf. Indian J Mar Sci 25:168–169Google Scholar
  212. Dragnewitsch P (1906) Spongien von Singapore. Zool Jahrb 23:440–448Google Scholar
  213. Duchassaing de Fonbressin P, Michelotti G (1864) Spongiaires de la mer Caraibe. Nat Verhand Holl Maatsch Wetensch Haarlem 21:1–124, pls I–XXVGoogle Scholar
  214. Duckworth AR, Peterson BJ (2013) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar Biol 160:27–35CrossRefGoogle Scholar
  215. Dunn JG, Sammarco PW, LaFleur G (2012) Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J Exp Mar Biol Ecol 411:34–44CrossRefGoogle Scholar
  216. Dunstan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107CrossRefGoogle Scholar
  217. Eakin CM (1992) Post-El Niño Panamanian reefs: less accretion, more erosion and damselfish protection. In: Proceedings of the 7th international coral reef symposium, vol 1, Guam, pp 387–396Google Scholar
  218. Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186Google Scholar
  219. Edinger EN, Risk MJ (1997) Sponge borehole size as a relative measure of bioerosion and paleoproductivity. Lethaia 29:275–286CrossRefGoogle Scholar
  220. Edinger EN, Jompa J, Limmon GV, Widjatmoko W, Risk MJ (1998) Reef degradation and coral biodiversity in Indonesia: effects of land-based pollution, destructive fishing practices and changes over time. Mar Poll Bull 36:617–630CrossRefGoogle Scholar
  221. Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Poll Bull 40:404–425CrossRefGoogle Scholar
  222. Educypedia (2015) The educational encyclopedia. Free atlas, outline maps, globes and maps of the world. Outline map of the world – blank world map. [4 September 2015]
  223. Eisapor S, Safaeian S (2013) Identification of sponges of intertidal zone in North of Hengam Island, Persian Gulf. J Mar Sci Eng 3:141–148Google Scholar
  224. Eisapor S, Safaeian S, Esmaeili A, Vakili AH, Bavandi R (2012) Identification of sponges of the offshore zone in the northwest of Hengam Island, Persian Gulf. J Mar Sci Tech Res 6:79–90Google Scholar
  225. Emson RH (1966) The reactions of the sponge Cliona celata to applied stimuli. Comp Biochem Physiol 18:805–827CrossRefGoogle Scholar
  226. Enochs IC, Manzello DP (2012) Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31:653–661CrossRefGoogle Scholar
  227. Enochs IC, Manzello DP, Calton RD, Graham DM, Ruzicka R, Colella MA (2015) Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for the persistence of the Florida Reef Tract. Bull Mar Sci 91:271–290CrossRefGoogle Scholar
  228. EOL Rapid Response Team (2017) Encyclopedia of life: Cassis tuberosa. [26 January 2017]
  229. Erdman MV (2000) Destructive fishing practices in Indonesian seas. In: Sheppard C (ed) Seas at the millenium: an environmental evaluation. Pergamon, Amsterdam, pp 392–393Google Scholar
  230. Erpenbeck D, van Soest RWM (2002) Family Halichondriidae Gray, 1867. In: Hooper JNA, van Soest RWM (eds) Systema Porifera. A guide to the classification of sponges, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 787–815Google Scholar
  231. Erpenbeck D, Voigt O, Al-Aidaroos AM, Berumen ML, Büttner G, Catania D, Guirguis AN, Paulay G, Schätzle S, Wörheide G (2016) Molecular biodiversity of Red Sea demosponges. Mar Poll Bull 105:507–514CrossRefGoogle Scholar
  232. Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK 87:1683–1692CrossRefGoogle Scholar
  233. Escobar D, Zea S, Sánchez JA (2012) Phylogenetic relationships among the Caribbean members of the Cliona viridis complex (Porifera, Demospongiae, Hadromerida) using nuclear and mitochondrial DNA sequences. Mol Phyl Evol 64:271–284CrossRefGoogle Scholar
  234. Eyster LS, Stancyk SE (1981) Reproduction, growth and trophic interactions of Doriopsilla pharpa Marcus in South Carolina. Bull Mar Sci 31:72–82Google Scholar
  235. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Poll Bull 50:125–146CrossRefGoogle Scholar
  236. Fahmy M (2003) Water quality in the Red Sea coastal waters (Egypt): analysis of spatial and temporal variability. Chem Ecol 19:67–77CrossRefGoogle Scholar
  237. Fang JKH, Schönberg CHL (2015) Carbonate budgets of coral reefs: recent developments in excavating sponge research. Reef Encounter 30:43–46Google Scholar
  238. Fang JKH, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013a) Methods to quantify components of the excavating sponge Cliona orientalis Thiele, 1900. Mar Ecol 34:193–206CrossRefGoogle Scholar
  239. Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013b) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591CrossRefGoogle Scholar
  240. Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S (2014) Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Change Biol 20:1043-1m054Google Scholar
  241. Fang JKH, Mason RAB, Schönberg CHL, Hoegh-Guldberg O, Dove S (2017a) Studying interactions between excavating sponges and massive corals by the use of hybrid cores. Mar Ecol 38:e12393CrossRefGoogle Scholar
  242. Fang JKH, Schönberg CHL, Hoegh-Guldberg O, Dove S (2017b) Symbiotic plasticity of Symbiodinium in a common excavating sponge. Mar Biol 164:104CrossRefGoogle Scholar
  243. Fang JKH, Schönberg CHL, Hoegh-Guldberg O, Dove S (2016) Day-night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis Thiele, 1900. Mar Biol 163:1–12CrossRefGoogle Scholar
  244. Färber C, Titschack J, Schönberg CHL, Ehrig K, Boos K, Baum D, Illerhaus B, Asgaard U, Bromley RG, Freiwald A, Wisshak M (2016) Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography. Biogeosciences 13:3461–3474Google Scholar
  245. Fell PE, Parry EH, Balsamo AM (1984) The life histories of sponges in the Mystic and Thames Estuaries (Connecticut), with emphasis on larval settlement and postlarval reproduction. J Exp Mar Biol Ecol 78:127–141CrossRefGoogle Scholar
  246. Feng M, Hendon HH, Xie SP, Marshall AG, Schiller A, Kosaka Y, Caputi N, Pearce A (2015) Decadal increase in Ningaloo Niño since the late 1990s. Geophys Res Lett 42:104–112CrossRefGoogle Scholar
  247. Fernandes L, Day JO, Lewis A, Slegers S, Kerrigan B, Breen DA, Cameron D, Jago B, Hall J, Lowe D, Innes J, Tanzer J, Cahdwick V, Thompson L, Gorman K, Simmons M, Barnett B, Sampson K, De’ath G, Mapstone B, Marsh H, Possingham H, Ball I, Ward T, Doobs K, Aumend J, Slater D, Stapleton K (2005) Establishing representative no-take areas in the Great Barrier Reef: large-scale implementation of theory on marine protected areas. Conserv Biol 19:1733–1744CrossRefGoogle Scholar
  248. Ferrario F, Calcinai C, Erpenbeck D, Galli P, Wörheide G (2010) Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge. Org Divers Evol 10:275–285CrossRefGoogle Scholar
  249. Fishelson L (1971) Ecology and distribution of the benthic fauna in the shallow waters of the Red Sea. Mar Biol 10:113–133CrossRefGoogle Scholar
  250. Fisher R, Radford BT, Knowlton N, Brainard RE, Michaelis FB, Caley MJ (2011) Global mismatch between research effort and conservation needs of tropical coral reefs. Conserv Lett 4:64–72CrossRefGoogle Scholar
  251. Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Change Biol 18:843–853CrossRefGoogle Scholar
  252. Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 937–977Google Scholar
  253. Freiwald A, Roberts JM (2005) Cold-water corals and ecosystems. Springer, Berlin, 1243 ppGoogle Scholar
  254. Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13:37–52CrossRefGoogle Scholar
  255. Fromont J (1993) Descriptions of species of the Haplosclerida (Porifera: Demospongiae) occurring in tropical waters of the Great Barrier Reef. Beagle Rec North Territory Mus Arts Sci 10:7–40Google Scholar
  256. Fromont J, Sampey A (2014) Kimberley marine biota. Historical data: sponges (Porifera). Rec West Aust Mus Suppl 84:69–100CrossRefGoogle Scholar
  257. Fromont J, Craig R, Rawlinson L, Alder J (2005) Excavating sponges that are destructive to farmed pearl oysters in Western and Northern Australia. Aquac Res 36:150–162CrossRefGoogle Scholar
  258. Furby KA, Bouwmeester J, Berumen ML (2003) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513CrossRefGoogle Scholar
  259. Fütterer DK (1974) Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments. J Sed Res 44:79–84Google Scholar
  260. Gallmetzer I, Haselmair A, Velimirov B (2010) Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coastal Shelf Sci 90:1–10CrossRefGoogle Scholar
  261. Galtsoff PA, Pertzoff V (1926) Some physiochemical properties of dissociated sponge cells. J Gen Physiol 10:239–255PubMedPubMedCentralCrossRefGoogle Scholar
  262. Gammill ER (1997) Identification of coral reef sponges. Providence Marine Publishing, Tampa. 117 ppGoogle Scholar
  263. Gammill ER, Fenner D (2005) Disease threatens Caribbean sponges: report and identification guide. [29 April 2016]
  264. Gappa JJ, Landoni N (2005) Biodiversity of Porifera in the Southwest Atlantic between 35° S and 56° S. Rev Mus Argentino Cienc Nat Nueva Ser 7:191–219CrossRefGoogle Scholar
  265. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272CrossRefGoogle Scholar
  266. Garrone R (1974) Ultrastructure d’une ‘gemmule armee’ planctonique d’eponge clionidae. Arch Anat Micros Morph Exp 63:163–182Google Scholar
  267. Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Poll Bull 52:549–559CrossRefGoogle Scholar
  268. Gilliam DS (2012) Southeast Florida coral reef evaluation and monitoring project 2011 year 9 final report. Nova Southeastern University, Dania Beach, p 42. [23 April 2016]
  269. Glynn PW (1982) Coral communities and their modifications relative to past and prospective Central American seaways. Adv Mar Biol 19:91–132CrossRefGoogle Scholar
  270. Glynn PW (1990) Coral mortality and disturbances to coral reefs in the Tropical Eastern Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern oscillation. Elsevier, Amsterdam, pp 55–126CrossRefGoogle Scholar
  271. Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 69–98. 536 ppGoogle Scholar
  272. Glynn PW, Colgan MW (1992) Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the eastern Pacific. Am Zool 32:707–718CrossRefGoogle Scholar
  273. Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109Google Scholar
  274. Glynn PW, Mones AB, Podestá GP, Colbert A, Colgan MW (2017) El-Niño Southern oscillations: effects on Eatsrn Pacific coral reefs and associated biota. In: Glynn PW, Manzello PD, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Netherlands, pp 252–290CrossRefGoogle Scholar
  275. Gomez ED, Alino PM, Yap HT, Licuanan WY (1994) A review of the status of Philippine reefs. Mar Poll Bull 29:62–68CrossRefGoogle Scholar
  276. González-Gándara C, Patiño-García A, Asís-Anastasio U, Serrano A, Gómez P (2009) Lista de esponjas marinas asociadas al arrecife Tuxpan, Veracruz, México. Rev Mex Biodiv 80:1–5Google Scholar
  277. González-Rivero M, Yakob L, Mumby PJ (2011) The role of sponge competition on coral reef alternative steady states. Ecol Model 222:1847–1853CrossRefGoogle Scholar
  278. González-Rivero M, Ferrari R, Schönberg CHL, Mumby PJ (2012) Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Mar Ecol Prog Ser 444:133–142CrossRefGoogle Scholar
  279. González-Rivero M, Ereskovsky AV, Schönberg CHL, Ferrari R, Fromont J, Mumby JP (2013) Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida). J Nat Hist 47:2815–2834CrossRefGoogle Scholar
  280. Google Scholar (2016) Google Scholar. Stand on the shoulders of giants.,5. [26 April 2015]
  281. Goreau T, McClanahan T, Hayes R, Strong AL (2000) Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol 14:5–15CrossRefGoogle Scholar
  282. Goreau TF, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of coral reefs. In: Sognnaes RF (ed) Mechanisms of hard tissue destruction. Publication American Association Advance of Science, Washington 75:25–54Google Scholar
  283. Gori A, Ferrier-Pagès C, Hennige SJ, Murray F, Rottier C, Wicks LC, Roberts JM (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4:e1606PubMedPubMedCentralCrossRefGoogle Scholar
  284. Granados C, Camargo C, Zea S, Sánchez JA (2008) Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phyl Evol 49: 554–560Google Scholar
  285. Grant RE (1826) Notice of a new zoophyte (Cliona celata, Gr.) from the Firth of Forth. Edinburgh New Phil J 1:78–81Google Scholar
  286. GRBMPA (2003) Great Barrier Reef Marine Park Zoning Plan 2003. Great Barrier Reef Marine Park Authority, Townsville. 211 ppGoogle Scholar
  287. Grech A, Pressey RL, Day JC (2016) Coal, cumulative impacts, and the Great Barrier Reef. Conserv Lett 9:200–207CrossRefGoogle Scholar
  288. Guida VG (1976) Sponge predation in the oyster reef community as demonstrated with Cliona celata Grant. J Exp Mar Biol Ecol 25:109–122CrossRefGoogle Scholar
  289. Guzmán HM (1988) Distribución y abundancia de organismos coralívoros en los arrecifes coralinos de la Isla del Caño, Costa Rica. Rev Biol Trop 36:191–207Google Scholar
  290. Guzmán HM, Cortés J (1993) Arrecifes coralinos del Pacífico oriental tropical: revisión y perspectivas. Rev Biol Trop 41:535–557Google Scholar
  291. Hadi TA, Budiyanto A, Wentao N (2016) The morphological and species diversity of sponges on coral reef ecosystems in the Lembeh Strait, Bitung. Mar Res Indones 40:61–72CrossRefGoogle Scholar
  292. Hain S, Corcoran E (2004) The status of the cold-water coral reefs of the world. In: Wilkinson CR (ed) Status of coral reefs of the world: 2004. Volume 1. Australian Institute of Marine Science, Townsville, pp 115–135Google Scholar
  293. Hall KA, Hooper JNA (2016) SpongeMaps - an online community for sponge taxonomy. [23 April 2016]
  294. Hallmann EF (1920) New genera of monaxonid sponges related to the genus Clathria. Proc Linn Soc New South Wales 44:767–792, pls XXXVI–XLGoogle Scholar
  295. Halperin AA, Chaves-Fonnegra A, Gilliam DS (2016) Effects of excavating-sponge removal on coral growth. J Mar Biol Assoc UK 96:473–479CrossRefGoogle Scholar
  296. Hamner WM, Jones MS (1976) Distribution, burrowing, and growth rates of the clam Tridacna crocea on interior reef flats. Oecologia 24:207–227PubMedCrossRefGoogle Scholar
  297. Hancock A (1849) On the excavating powers of certain sponges belonging to the genus Cliona; with descriptions of several new species, and an allied generic form. Ann Mag Nat Hist 17:321–348, pls XII–XVGoogle Scholar
  298. Hansson HG (1999) NEAT (North East Atlantic Taxa): Scandinavian marine Porifera (Spongiaria) check-list.*Porifera.pdf. [30 April 2016]
  299. Harper MK (2014) UU1027 Zyzzya fuliginosa (Carter, 1879). In: Hall KA, Hooper JNA (eds) SpongeMaps: an online community for taxonomy and identification of sponges. [15 January 2017]
  300. Hartman WD (1958) Natural history of the marine sponges of southern New England. Bull Peabody Mus Nat Hist 12:1–155Google Scholar
  301. Hatch WI (1980) The implication of carbonic anhydrase in the physiological mechanism of penetration of carbonate substrata by the marine burrowing sponge Cliona celata (Demospongiae). Biol Bull 159:135–147CrossRefGoogle Scholar
  302. Hechtel GJ (1965) A systematic study of the Demospongiae of Port Royal, Jamaica. Bull Peabody Mus Nat Hist 20:1–103Google Scholar
  303. Hein FJ, Risk MJ (1975) Bioerosion of coral heads: inner patch reefs, Florida reef tract. Bull Mar Sci 25:133–138Google Scholar
  304. Hentschel E (1909) Die Fauna Südwest-Australiens. Ergebnisse ther Hamburger südwest-australischen Forschungsreise 1905. Tetraxonida. 1. Teil. Gustav Fischer, Jena, pp 347-, pls XXII–XXIIIGoogle Scholar
  305. Hentschel E (1912) Kiesel- und Hornschwämme der Aru- und Kei-Inseln. Abh Senckenb Naturf Ges 34:293–448, pls 13–21Google Scholar
  306. Hepburn LJ, Perry CT, Blanchon P (2006) Distribution of macroborers in reef rubble, Puerto Morelos, Mexican Caribbean. In: Proceedings of the 10th international coral reef symposium, Okinawa, pp 327–334Google Scholar
  307. Hernández-Ballesteros LM, Elizalde-Rendón EM, Carballo JL, Carricart-Ganivet JP (2013) Sponge bioerosion on reef-building corals: dependent on the environment or on skeletal density? J Exp Mar Biol Ecol 441:23–27CrossRefGoogle Scholar
  308. Herrera-Moreno A, Betancourt L, Alcolado PM (2012) Espicies de esponjas marinas conocidas para la Isla Hispaniola. Novitates Carib 5:81–94Google Scholar
  309. Highsmith RC (1981a) Coral bioerosion at Enewetak: agents and dynamics. Int Rev Ges Hydrobiol 66:335–375CrossRefGoogle Scholar
  310. Highsmith RC (1981b) Coral bioerosion: damage relative to skeletal density. Am Nat 117:193–198CrossRefGoogle Scholar
  311. Highsmith RC, Lueptow RL, Schonberg SC (1983) Growth and bioerosion of three massive corals on the Belize barrier reef. Mar Ecol Prog Ser 13:261–271CrossRefGoogle Scholar
  312. Hill M (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol 125:649–654CrossRefGoogle Scholar
  313. Hill M (1998) Spongivory on Caribbean reefs releases corals from competition with sponges. Oecologia 117:143–150PubMedCrossRefGoogle Scholar
  314. Hill M (1999) Morphological and genetic examination of phenotypic variability in the tropical sponge Anthosigmella varians. Mem Queensl Mus 44:239–247Google Scholar
  315. Hill M, Wilcox T (1998) Unusual mode of symbiont repopulation after bleaching in Anthosigmella varians: acquisition of different zooxanthellae strains. Symbiosis 25:279–289Google Scholar
  316. Hill M, Allenby A, Ramsby B, Schönberg CHL, Hill A (2011) Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88PubMedCrossRefGoogle Scholar
  317. Hill M, Walter C, Bartels E (2016) A mass bleaching event involving clionaid sponges. Coral Reefs 35:153CrossRefGoogle Scholar
  318. Hill MS, Hill AL (2002) Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. Biol Bull 202:86–95PubMedCrossRefGoogle Scholar
  319. Hodgson G (1999) A global assessment of human effects on coral reefs. Mar Poll Bull 38:345–355CrossRefGoogle Scholar
  320. Hoegh-Guldberg O (2011) Coral reef ecosystems and anthropogenic climate change. Reg Environ Chang 11:215–227CrossRefGoogle Scholar
  321. Hoegh-Guldberg O, Ridgway T (2016) Coral bleaching hits Great Barrier Reef as global temperatures soar. Green Left Weekly 1090:10Google Scholar
  322. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  323. Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the coral triangle. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Springer, Dordrecht, pp 117–178Google Scholar
  324. Hofman CC, Kielman M (1992) The excavating sponges of the Santa Marta area, Colombia, with description of new species. Bijdr Dierk 61:205–217Google Scholar
  325. Holmes KE (1997) Eutrophication and its effect on bioeroding sponge communities. In: Proceedings of the 8th international coral reef symposium, Panama City, pp 1411–1415Google Scholar
  326. Holmes KE (1997) Eutrophication and its effect on bioeroding sponge communities. Proc 8th Int Coral Reef Symp, Panama City, pp 1411–1415Google Scholar
  327. Holmes KE (2000) Effects of eutrophication on bioeroding sponge communities with the description of new West Indian sponges, Cliona spp. (Porifera: Hadromerida: Clionidae). Invertebr Biol 119:125–138CrossRefGoogle Scholar
  328. Holmes KE, Edinger EN, Hariyadi H, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Poll Bull 40:606–661CrossRefGoogle Scholar
  329. Hooper JN, Krasochin V (1989) Redescription of the burrowing sponge Zyzzya massalis (Dendy) from the Seychelles and Houtman-Abrolhos Islands. Beagle Rec Mus Art Galler North Territory 6:133–140Google Scholar
  330. Hooper JN, Kennedy JA, Soest RWM (2000) Annotated checklist of sponges (Porifera) of the South China Sea region. Raffles Bull Zool 8:125–207Google Scholar
  331. Hooper JN, Hall KA, Ekins M, Erpenbeck D, Wörheide G, Jolley-Rogers G (2013) Managing and sharing the escalating number of sponge ‘unknowns’: the SpongeMaps Project. Integr Comp Biol. doi: 10.1093/icb/ict038
  332. Hooper JNA (2002) Family Acarnidae Dendy, 1922. In: Hooper JNA, van Soest RWM (eds) Systema Porifera. A guide to the classification of sponges 1. Kluwer Academic/Plenum Publishers, New York, pp 412–431Google Scholar
  333. Hooper JNA, Wiedenmayer F (1994) Porifera. In: Wells A, Houston WWK (eds) Zoological Catalogue of Australia 12. CSIRO Australia, Melbourne, 620 ppGoogle Scholar
  334. Hoshino T (1976) Demosponges from the western coast of Kii Peninsula, Japan. Zool Mag 85:248–261Google Scholar
  335. Hoshino T (1977) Demosponges from the Kii channel and its environs, western Japan. Proc Jap Soc Syst Zool 13:5–15Google Scholar
  336. Hoshino T (1981) Shallow-water demosponges of western Japan, II. J Sci Hiroshima Univ 29:207–289Google Scholar
  337. Hoshino T (1982) Descriptions of the dominant species of the class Demospongia dredged from the coastal area of the Izu Peninsula of sagami Bay. Mem Natn Sci Mus Tokyo 15:139–148, pls 7–8Google Scholar
  338. Hoshino T (1987) A preliminary catalogue of the marine species of the class Demospongia (Porifera) from Japanese waters. Mukaishima Marine Biological Station, Faculty of Science, Hiroshima University, Hiroshima, 48 ppGoogle Scholar
  339. Hourigan TF, Stanton FG, Motta PJ, Kelley CD, Carlson B (1989) The feeding ecology of three species of Caribbean angelfishes (family Pomacanthidae). Environ Biol Fish 24:105–116CrossRefGoogle Scholar
  340. Hudson JH (1977) Long-term bioerosion rates on a Florida reef: a new method. In: Proceedings of the 3rd international coral reef symposium, Miami, pp 491–497Google Scholar
  341. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551PubMedCrossRefGoogle Scholar
  342. Hume BC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. PNAS 113:4416–4421PubMedPubMedCentralCrossRefGoogle Scholar
  343. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252CrossRefGoogle Scholar
  344. Hutchings PA, Peyrot-Clausade M, Osorno A (2005) Influence of land runoff on rates and agents of bioerosion of coral substrates. Mar Poll Bull 51:438–447CrossRefGoogle Scholar
  345. Immanuel T, Krishnan P, Raghunathan C (2015) An updated report on the diversity of marine sponges of the Andaman and Nicobar Islands. In: Venkataraman K, Sivaperuman C (eds) Marine faunal diversity in India. Taxonomy, ecology and conservation. Academic Press, Amsterdam, pp 3–13Google Scholar
  346. Ise Y, Tekeda M, Watanabe Y (2004) Psammobiontic Clionaidae (Demospongiae: Hadromerida) in lagoons of the Ryukyu Islands, southwestern Japan. Boll Mus Isl Biol Univ Genova 68:381–389Google Scholar
  347. Ise Y (2010) Floating dispersal through asexual reproduction of a psammobiontic sponge in coral reefs of the Ryukyu Islands, Southern Japan. Abstract 8th world sponge conference, Girona, suppl 1:70Google Scholar
  348. Jafari MA, Seyfabadi J, Shokri MR (2016) Internal bioerosion in dead and live hard corals in intertidal zone of Hormuz Island (Persian Gulf). Mar Poll Bull 105:586–592CrossRefGoogle Scholar
  349. Jameson SC, Ammar MS, Saadalla E, Mostafa HM, Riegl B (1999) A coral damage index and its application to diving sites in the Egyptian Red Sea. Coral Reefs 18:333–339CrossRefGoogle Scholar
  350. Järnegren J, Kutti T (2014) Lophelia pertusa in Norwegian waters. What have we learned since 2008? NINA Report 1028. Norwegian Institute for Nature Research, Trondheim, 35 ppGoogle Scholar
  351. Jennings AV (1891) On a variety of Alectona millari (Carter). Linn Soc J Zool 23:531–539, pl. 13Google Scholar
  352. Jensen A, Frederiksen R (1992) The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia 77:53–69CrossRefGoogle Scholar
  353. Jones T, Glasson J, Wood D, Fulton EA (2011) Regional planning and resilient futures: destination modelling and tourism development – the case of the Ningaloo coastal region in Western Australia. Plan Pract Res 26:393–415CrossRefGoogle Scholar
  354. Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2004) Do clades of symbiotic dinoflagellates in scleractinian corals of the Gulf of Eilat (Red Sea) differ from those of other coral reefs? J Exp Mar Biol Ecol 311:301–314CrossRefGoogle Scholar
  355. Keller C (1891) Die Spongienfauna des Rothen Meeres (II. Hälfte). Z wiss Zool 52:294–368, pls XVI–XXGoogle Scholar
  356. Kelly M (1986) Systematics and ecology of the sponges of Motupore Island, Papua New Guinea. MSc thesis, University of Auckland, Auckland, p 101, 6 apps, 15 pls. [27 April 2016]
  357. Kelly M, Hooper JNA, Paul VA, Paulay GU, van Soest RWM, de Weerdt WA (2003) Taxonomic inventory of the sponges (Porifera) of the Mariana Islands. Micronesica 35:100–120Google Scholar
  358. Kelly-Borges M, Bergquist PR (1988) Sponges from Matupore Island, Papua New Guinea. Indo-Malayan Zool 5:121–159Google Scholar
  359. Kelly-Borges M, Vacelet J (1998) Sponges of the New Caledonian Lagoon: class Demospongiae, order Hadromerida. In: Lévi C, Laboute P, Bargibant G, Menou J-L (eds) Sponges of the New Caledonian Lagoon. Orstom Editions, Paris, pp 87–93Google Scholar
  360. Kelmo F, Bell JJ, Attrill MJ (2013) Tolerance of sponge assemblages to temperature anomalies: resilience and proliferation of sponges following the 1997–1998 El-Niño Southern Oscillation. PLoS One 8:e76441PubMedPubMedCentralCrossRefGoogle Scholar
  361. Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral structural collapse requires local and global action. Curr Biol 23:912–918PubMedCrossRefGoogle Scholar
  362. Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98CrossRefGoogle Scholar
  363. Kieschnick O (1896) Silicispongiae von Ternate nach den Sammlungen von Herrn Prof. Dr. W. Kükenthal. Zool Anz 19:526–534Google Scholar
  364. Kieschnick O (1900) Kieselschwämme von Amboina. In: Semon R (ed) Zoologische Forschungsreisen in Australien und dem Malayischen Archipel ausgesführt in den Jahren 1891–1893. Denkschr Med Nat Ges 8. Gustav Fischer, Jena, pp 547–582Google Scholar
  365. Kirkpatrick R (1900a) Description of sponges from Funafuti. Ann Mag Nat Hist (7)6:345–362, pls XIII–XVGoogle Scholar
  366. Kirkpatrick R (1900b) On the sponges of Christmas Island. Proc Zool Soc London 1900:127–141, pls XII–XIIIGoogle Scholar
  367. Kiruba-Sankar R, Chadha NK, Dam-Roy S, Sawant PB, Saharan N, Krishnan P (2016) Marine sponges as biological indicator of oligotrophic Andaman waters. Indian J Geo Mar Sci 45:338–341Google Scholar
  368. Klein R, Mokady O, Loya Y (1991) Bioerosion in ancient and contemporary corals of the genus Porites: patterns and palaeoenvironmental implications. Mar Ecol Prog Ser 77:245–251CrossRefGoogle Scholar
  369. Kobluk DR, van Soest RWM (1989) Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull Mar Sci 44:1207–1035Google Scholar
  370. Kotb M, Abdulaziz M, Al-Agwan Z, Al-Shaikh K, Al-Yami H, Banajah A, DeVantier L, Eisinger M, Eltayeb M, Hassan M, Heiss, G, Howe S, Kemp J, Klaus R, Krupp F, Mohamed N, Rouphael A, Turner J, Zajonz U (2004) Status of coral reefs in the Red Sea and Gulf of Aden in 2004. In: Wilkinson CR (ed) Status of coral reefs of the world: 2004. Volume 1. Australian Institute of Marine Science, Townsville, pp 137–154Google Scholar
  371. Kumar A (1925) Report on some tetraxonid sponges in the collection of the Indian Museum. Rec Indian Mus 27:211–229Google Scholar
  372. Kumar M, Jogani S (2014) Primary characterization of sponge associated bacteria of marine sponges-Halichondria glabrata, Cliona lobata, Spirastrella pachyspira and their antimicrobial properties. J Microbiol Biotechnol Food Sci 4:117–121CrossRefGoogle Scholar
  373. Kumar MS, Shah B (2014) Comparative structural morphometry and elemental composition of three marine sponges from Western Coast of India. Microsc Res Tech 77:296–304PubMedCrossRefGoogle Scholar
  374. Lafratta A, Fromont J, Speare P, Schönberg CHL (2016) Coral bleaching in turbid waters of North-Western Australia. Mar Freshw Res 68:65–75Google Scholar
  375. Lang JC, Marks KW, Kramer PA, Richards Kramer P, Ginsburg RN (2010) Atlantic and gulf rapid reef assessment protocols, Ver. 5.4. [23 April 2016]
  376. Leal CV, de Paula TS, Lôbo-Hajdu G, Schönberg CHL, Esteves EL (2016) Morphological and molecular systematics of the ‘Cliona viridis complex’ from south-eastern Brazil. J Mar Biol Assoc UK 96:313–322CrossRefGoogle Scholar
  377. Lehnert H (1993) Die Schwämme von Cozumel. Bestandsaufnahme, kritischer Vergleich taxonomischer Merkmale und Beschreibung einer neuen Art. Acta Biol Benrodis 5:35–127Google Scholar
  378. Lehnert H, van Soest RWM (1998) Shallow water sponges of Jamaica. Beaufortia 48:71–103Google Scholar
  379. Lehnert H, van Soest RWM (1999) More north Jamaican deep fore-reef sponges. Beaufortia 49:141–169Google Scholar
  380. León YM, Bjorndal KA (2002) Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Mar Ecol Prog Ser 245:249–258CrossRefGoogle Scholar
  381. León-Pech MG, Cruz-Barraza JA, Carballo JL, Calderon-Aguilera LE, Rocha-Olivares A (2015) Pervasive genetic structure at different geographic scales in the coral-excavating sponge Cliona vermifera (Hancock, 1867) in the Mexican Pacific. Coral Reefs 34:887–897CrossRefGoogle Scholar
  382. Lescinsky HL, Edinger E, Risk MJ (2002) Mollusc shell encrustation and bioerosion rates in a modern epeiric sea: taphonomy experiments in the Java Sea, Indonesia. Palaios 17:171–191CrossRefGoogle Scholar
  383. Lévi C (1956) Spongiaires des côtes de Madagascar. Mém Inst Sci Madagascar A 10:1–23, figs 1–14Google Scholar
  384. Lévi C (1958) Résultats scientifiques des Campagnes de la ‘Calypso’.Campagne 1951–1952 en Mer Rouge (suite). 11. Spongiaires de Mer Rouge recueillis par la ‘Calypso’ (1951–1952). Ann Inst Océanogr 34:3–46Google Scholar
  385. Lévi C (1959a) Campagnes de la ‘Calypso’: Golfe de Guinée. Spongiaires. Ann Inst Océanogr 37:115–140, pls 5–6Google Scholar
  386. Lévi C (1959b) Spongiaires des Iles Philippines, principalement récoltées au voisinage de Zamboanga. Philipp J Sci 88:509–533Google Scholar
  387. Lévi C (1961) Résultats scientifiques des Campagnes de la ‘Calypso’. Campagne 1954 dans l’Océan Indien (suite). 2. Les spongiaires de l’Ile Aldabra. Ann Inst Océanogr 39:1–32, pls 1–2Google Scholar
  388. Lévi C (1965a) Spongiaires récoltés par l’expédition israélienne dans le sud de la Mer Rouge en 1962. Israel South Red Sea Expedition1962, Report 13. Bull Sea Fish Res Stat Israel 39:3–27Google Scholar
  389. Lévi C (1965b) Spongiaires des côtes de Madagascar. Mém Inst Sci Madagascar A 10:1–23Google Scholar
  390. Li TH (2013) Preliminary survey on the biodiversity of marine sponges (Porifera: Demonspongiae) in the southern water off the Penghu Archipelago. MSc thesis, National Sun Yat-sen University, Kaohsiung, p 152. [24 January 2017]
  391. Lim SC, de Voogd NJ, Tan KS (2008) A guide to sponges of Singapore. Science Centre Singapore, Singapore, 173 pGoogle Scholar
  392. Lim SC, de Voogd NJ, Tan KS (2009) Fouling sponges (Porifera) on navigation buoys from Singapore waters. Raffles Bull Zool 22:41–58Google Scholar
  393. Lim SC, de Voogd NJ, Tan KS (2012a) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae). Contrib Zool 81:55–71Google Scholar
  394. Lim SC, Tun K, Goh E (2012b) Rediscovery of the Neptune’s cup sponge in Singapore: Cliona or Poterion? Contrib Mar Sci Natl Univ Singapore 2012:49–56Google Scholar
  395. Lim SC, Putchakarn S, Thai MQ, Wang D, Huang YM (2016) Inventory of sponge fauna from the Singapore Strait to Taiwan Strait along the western coastline of the South China Sea. Raffles Bull Zool Suppl 34:104–129Google Scholar
  396. Lindberg B, Mienert J (2005) Postglacial carbonate production by cold-water corals on the Norwegian Shelf and their role in the global carbonate budget. Geology 33:537–540CrossRefGoogle Scholar
  397. Lindgren NG (1898) Beitrag zur Kenntniss der Spongienfauna des Malayischen Archipels und der chinesischen Meere. Zool Jahrb Jena, 11:283–378, pls 17–20Google Scholar
  398. Lirman D, Glynn PW, Baker AC, Leyte Morales GE (2001) Combined effects of three sequential storms on the Huatulco coral reef tract, Mexico. Bull Mar Sci 69:267–278Google Scholar
  399. Little FJ Jr (1963) The sponge fauna of the St. George’s Sound, Apalache Bay, and Panama City Regions of the Florida Gulf Coast. Tulane Stud Zool 11:31–71CrossRefGoogle Scholar
  400. Little FJ (1968) An experimental or tentative revision of the genus Cliona utilizing the principles of numerical taxonomy. Proc Pa Acad Sci 42:38–48Google Scholar
  401. Longakit MBA, Sotto FB, Kelly M (2005) The shallow water marine sponges (Porifera) of Cebu, Philippines. Sci Diliman 17:52–74Google Scholar
  402. Longo C, Mastrototaro F, Corriero G (2005) Sponge fauna associated with a Mediterranean deep-sea coral bank. J Mar Biol Assoc UK 85:1341–1352CrossRefGoogle Scholar
  403. López-Victoria M, Zea S (2004) Storm-mediated coral colonization by an excavating Caribbean sponge. Clim Res 26:251–256CrossRefGoogle Scholar
  404. López-Victoria M, Zea S (2005) Current trends of space occupation by encrusting excavating sponges on Colombian coral reefs. Mar Ecol 26:33–41CrossRefGoogle Scholar
  405. López-Victoria M, Zea S, Weil E (2006) Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Mar Ecol Prog Ser 312:113–121CrossRefGoogle Scholar
  406. López-Victoria MA, Zea SV, Weil ER (2004) New aspects on the biology of the encrusting excavating sponges Cliona aprica, Cliona caribbaea and Cliona sp. Boll Mus Ist Biol Univ Genova 68:425–432Google Scholar
  407. Low MEY (2012) The date of publication of Cliona patera (Hardwicke), the ‘sponge plant from the shores of Singapore’ (Porifera: Hadromerida: Clionaidae). Nat Singapore 5:223–227Google Scholar
  408. Loya Y, Lubinevsky H, Rosenfeld M, Kramarsky-Winter E (2004) Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar Poll Bull 49:344–453CrossRefGoogle Scholar
  409. Lucas SG (1986) Proper syntax when using aff. and cf. in taxonomic statements. J Vertebr Paleont 6:202CrossRefGoogle Scholar
  410. Luke SR (1998) Catalog of the benthic invertebrate collections of the Scripps Institution of Oceanography. Porifera. SIO Reference Series 98–06. Scripps Institution of Oceanography, San Diego, 31 ppGoogle Scholar
  411. Lunden JJ, McNicholl CG, Sears CR, Morrison CL, Cordes EE (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:78/1–78/12CrossRefGoogle Scholar
  412. Lynch TC, Phlips EJ (2000) Filtration of the bloom-forming cyanobacteria Synechococcus by three sponge species from Florida Bay, USA. Bull Mar Sci 67:923–936Google Scholar
  413. Macdonald IA, Perry CT (2003) Biological degradation of coral framework in a turbid lagoon environment, Discovery Bay, North Jamaica. Coral Reefs 22:523–535CrossRefGoogle Scholar
  414. MacGeachy JK (1977) Factors controlling sponge boring in Barbados reef corals. In: Proceedings of the 3rd international coral reef symposium, vol 2, Miami, pp 477–483Google Scholar
  415. MacGeachy JK, Stearn CW (1976) Boring by macro-organisms in the coral Montastrea annularis on Barbados Reefs. Int Rev ges Hydrobiol Hydrogr 61:715–745CrossRefGoogle Scholar
  416. Madin EMP (2015) Halt reef destruction in South China Sea. Nature 524:291PubMedCrossRefGoogle Scholar
  417. Maier C (1997) Distribution and abundance of internal bioeroders in coral reefs. A field survey in the northern Red Sea. MSc thesis at the Bremen University, Bremen, 94 ppGoogle Scholar
  418. Makowski C, Keyes P (2011) Using the benthic ecological assessment for marginal reefs (BEAMR) method to quantify nearshore reef conditions in the Southeast Gulf of Mexico. J Coast Res 27:428–440CrossRefGoogle Scholar
  419. Maldonado M (1992) Demosponges of the red coral bottoms from the Alboran Sea. J Nat Hist 26:1131–1161CrossRefGoogle Scholar
  420. Mallela J, Perry CT (2007) Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26:129–145CrossRefGoogle Scholar
  421. Mallela JA (2004) Coral reef communities and carbonate production in a fluvially-influenced embayment, Rio Bueno, Jamaica. PhD thesis, Manchester Metropolitan University, Manchester, 222 ppGoogle Scholar
  422. Manasrah R, Raheed M, Badran MI (2006) Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba, Red Sea. Oceanologia 48:237–253Google Scholar
  423. Manzello DP (2010) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248CrossRefGoogle Scholar
  424. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. PNAS 105:10450–10455PubMedPubMedCentralCrossRefGoogle Scholar
  425. Manzello DP, Eakin CM, Glynn PW (2017) Effects of global warming and ocean acidification on carbonate budgets of Eastern Pacific coral reefs. In: Glynn PW, Manzello PD, Enochs IC (eds) Coral reefs of the Eastern Tropical Pacific. Springer, Netherlands, pp 517–533Google Scholar
  426. Mariani S, Uriz MJ (2001) Copepods of the genus Asterocheres (Copepoda: Siphonostomatoida) feeding on sponges: behavioral and ecological traits. Invertebr Biol 120:269–277CrossRefGoogle Scholar
  427. Mariani S, Uriz MJ, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137:783–790CrossRefGoogle Scholar
  428. Mariani S, Piscitelli MP, Uriz MJ (2001) Temporal and spatial co-occurrence in spawning and larval release of Cliona viridis (Porifera: Hadromerida). J Mar Biol Assoc UK 81:565–567CrossRefGoogle Scholar
  429. Mariani S, Uriz MJ, Turon X (2005) The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J Plankton Res 27:249–262CrossRefGoogle Scholar
  430. Mariani S, Uriz MJ, Turon X, Alcoverro T (2006) Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component. Oecologia 149:174–184PubMedCrossRefGoogle Scholar
  431. Márquez JC, Zea S (2012) Parrotfish mediation in coral mortality and bioerosion by the encrusting, excavating sponge Cliona tenuis. Mar Ecol 33:417–426CrossRefGoogle Scholar
  432. Márquez JC, Zea S, López-Victoria M (2006) Is competition for space between the encrusting excavating sponge Cliona tenuis and corals influenced by higher-than-normal temperatures? Bol Invest Mar Cost 35:256–265Google Scholar
  433. Martin D (1996) A new species of Polydora (Polychaeta, Spionidae) associated with the excavating sponge Cliona viridis (Porifera, Hadromerida) in the North Western Mediterranean sea. Ophelia 45:159–174CrossRefGoogle Scholar
  434. Marulanda-Gómez Á, López-Victoria M, Zea S (2017) Current status of coral takeover by an encrusting excavating sponge in a Caribbean reef. Mar Ecol 38:e12379CrossRefGoogle Scholar
  435. Massaro AJ, Weisz JB, Hill MS, Webster NS (2012) Behavioral and morphological changes caused by thermal stress in the Great Barrier Reef sponge Rhopaloeides odorabile. J Exp Mar Biol Ecol 416-417:55–60CrossRefGoogle Scholar
  436. Mastrototaro F, d’Onghia G, Corriero G, Matarrese A, Maiorano P, Panetta P, Gherardi M, Longo C, Rosso A, Sciuto F, Sanfilippo R (2010) Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep Sea Res II 57:412–430CrossRefGoogle Scholar
  437. McCoy SJ (2013) Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the northeast Pacific. J Phycol 49:830–837PubMedGoogle Scholar
  438. McKenna SA (1997) Interactions between the boring sponge Cliona lampa and two hermatypic corals from Bermuda. In: Proceedings of the 8th international coral reef symposium, vol 2, Panama City, pp 1369–1374Google Scholar
  439. McKenna SA, Ritter J (1999) Cliona lampa and disturbance on the coral reefs of Castle Harbour, Bermuda. Mem Queensl Mus 44:360