Advertisement

A Survey on Applications of Bipartite Graph Edit Distance

  • Michael Stauffer
  • Thomas Tschachtli
  • Andreas Fischer
  • Kaspar Riesen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10310)

Abstract

About ten years ago, a novel graph edit distance framework based on bipartite graph matching has been introduced. This particular framework allows the approximation of graph edit distance in cubic time. This, in turn, makes the concept of graph edit distance also applicable to larger graphs. In the last decade the corresponding paper has been cited more than 360 times. Besides various extensions from the methodological point of view, we also observe a great variety of applications that make use of the bipartite graph matching framework. The present paper aims at giving a first survey on these applications stemming from six different categories (which range from document analysis, over biometrics to malware detection).

Keywords

Applications of bipartite graph matching Graph-based pattern representations 

Notes

Acknowledgments

This work has been supported by the Hasler Foundation Switzerland.

References

  1. 1.
    Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Graph kernels for molecular structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model. 45(4), 939–951 (2005)CrossRefGoogle Scholar
  2. 2.
    Schenker, A.: Graph-Theoretic Techniques for Web Content Mining, vol. 62. World Scientific, Singapore (2005)zbMATHGoogle Scholar
  3. 3.
    Borgwardt, K.M., Kriegel, H.P., Vishwanathan, S.V.N., Schraudolph, N.N.: Graph kernels for disease outcome prediction from protein-protein interaction networks. In: Pacific Symposium on Biocomputing, pp. 4–15 (2007)Google Scholar
  4. 4.
    Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Anal. Appl. 7(3), 243–254 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Graph matching applications in pattern recognition and image processing. Int. Conf. Image Process. 3, 21–24 (2003)Google Scholar
  6. 6.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(03), 265–298 (2004)CrossRefGoogle Scholar
  7. 7.
    Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 Years. Int. J. Pattern Recognit. Artif. Intell. 28(01), 1450001 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognit. Lett. 1(4), 245–253 (1983)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sanfeliu, A., Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man. Cybern. 13(3), 353–362 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72903-7_1 CrossRefGoogle Scholar
  11. 11.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)CrossRefGoogle Scholar
  12. 12.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognit. Lett. 45(1), 244–250 (2014)CrossRefGoogle Scholar
  14. 14.
    Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44415-3_8 Google Scholar
  15. 15.
    Riesen, K., Ferrer, M., Bunke, H.: Approximate graph edit distance in quadratic time. IEEE Trans. Comput. Biol. Bioinform. (99), 1 (2015). http://ieeexplore.ieee.org/document/7264987/
  16. 16.
    Fischer, A., Riesen, K., Bunke, H.: Improved quadratic time approximation of graph edit distance by combining Hausdorff matching and greedy assignment. Pattern Recognit. Lett. 87, 55–62 (2017)CrossRefGoogle Scholar
  17. 17.
    Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recognit. 48(4), 1349–1363 (2015)CrossRefGoogle Scholar
  18. 18.
    Riesen, K., Fischer, A., Bunke, H.: Estimating graph edit distance using lower and upper bounds of bipartite approximations. Int. J. Pattern Recognit. Artif. Intell. 29(02), 1550011 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, L., Lu, Y., Suen, C.Y.: Retrieval of envelope images using graph matching. In: International Conference on Document Analysis and Recognition, pp. 99–103 (2011)Google Scholar
  20. 20.
    Zhang, Y., Yang, X., Qiao, H., Liu, Z., Liu, C., Wang, B.: A graph matching based key point correspondence method for lunar surface images. In: World Congress on Intelligent Control and Automation, pp. 1825–1830 (2016)Google Scholar
  21. 21.
    Madi, K., Seba, H., Kheddouci, H., Barge, O.: A graph-based approach for Kite recognition. Pattern Recognit. Lett. 87, 186–194 (2017)CrossRefGoogle Scholar
  22. 22.
    Hasegawa, M., Tabbone, S.: A local adaptation of the histogram radon transform descriptor: an application to a shoe print dataset. In: Gimel’farb, G., et al. (eds.) SSPR/SPR 2012. LNCS, vol. 7626, pp. 675–683. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34166-3_74 CrossRefGoogle Scholar
  23. 23.
    Seidl, M., Wieser, E., Zeppelzauer, M., Pinz, A., Breiteneder, C.: Graph-based shape similarity of petroglyphs. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 133–148. Springer, Cham (2015). doi: 10.1007/978-3-319-16178-5_9 CrossRefGoogle Scholar
  24. 24.
    Wessel, R., Blümel, I., Ochmann, S., Vock, R.: Efficient retrieval of 3D building models using embeddings of attributed subgraphs. In: ACM Conference on Information and Knowledge Management, pp. 2097–2100 (2011)Google Scholar
  25. 25.
    Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching algorithm for graph-based handwriting recognition. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 194–203. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38221-5_21 CrossRefGoogle Scholar
  26. 26.
    Riesen, K., Brodić, D., Milivojević, Z.N., Maluckov, Č.A.: Graph based keyword spotting in medieval slavic documents – a project outline. In: Ioannides, M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.-Y., Quak, E. (eds.) EuroMed 2014. LNCS, vol. 8740, pp. 724–731. Springer, Cham (2014). doi: 10.1007/978-3-319-13695-0_74 Google Scholar
  27. 27.
    Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A novel learning-free word spotting approach based on graph representation. In: International Workshop on Document Analysis Systems, pp. 207–211 (2014)Google Scholar
  28. 28.
    Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., Fornes, A.: A coarse-to-fine word spotting approach for historical handwritten documents based on graph embedding and graph edit distance. In: International Conference on Pattern Recognition, pp. 3074–3079 (2014)Google Scholar
  29. 29.
    Stauffer, M., Fischer, A., Riesen, K.: Graph-based keyword spotting in historical handwritten documents. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 564–573. Springer, Cham (2016). doi: 10.1007/978-3-319-49055-7_50 CrossRefGoogle Scholar
  30. 30.
    Bui, Q.A., Visani, M., Mullot, R.: Unsupervised word spotting using a graph representation based on invariants. In: International Conference on Document Analysis and Recognition, pp. 616–620 (2015)Google Scholar
  31. 31.
    Riba, P., Llados, J., Fornes, A.: Handwritten word spotting by inexact matching of grapheme graphs. In: International Conference on Document Analysis and Recognition, pp. 781–785 (2015)Google Scholar
  32. 32.
    Jouili, S., Coustaty, M., Tabbone, S., Ogier, J.M.: NAVIDOMASS: structural-based approaches towards handling historical documents. In: International Conference on Pattern Recognition, pp. 946–949 (2010)Google Scholar
  33. 33.
    Stauffer, M., Fischer, A., Riesen, K.: A Novel Graph Database for Handwritten Word Images. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 553–563. Springer, Cham (2016). doi: 10.1007/978-3-319-49055-7_49 CrossRefGoogle Scholar
  34. 34.
    Arakala, A., Davis, S.A., Horadam, K.J.: Retina features based on vessel graph substructures. In: International Joint Conference on Biometrics, pp. 1–6 (2011)Google Scholar
  35. 35.
    Lajevardi, S.M., Arakala, A., Davis, S.A., Horadam, K.J.: Retina verification system based on biometric graph matching. IEEE Trans. Image Process. 22(9), 3625–3635 (2013)CrossRefGoogle Scholar
  36. 36.
    Horadam, K.J., Arakala, A., Davis, S., Lajevardi, S.M.: Hand vein authentication using biometric graph matching. IET Biom. 3(4), 302–313 (2014)CrossRefGoogle Scholar
  37. 37.
    Arakala, A., Hao, H., Davis, S., Horadam, K.J.: The palm vein graph for biometric authentication. In: Camp, O., Weippl, E., Bidan, C., Aïmeur, E. (eds.) ICISSP 2015. CCIS, vol. 576, pp. 199–218. Springer, Cham (2015). doi: 10.1007/978-3-319-27668-7_12 CrossRefGoogle Scholar
  38. 38.
    Choi, Y., Kim, G.: Graph-based fingerprint classification using orientation field in core area. IEICE Electron. Express 7(17), 1303–1309 (2010)CrossRefGoogle Scholar
  39. 39.
    Brun, L., Conte, D., Foggia, P., Vento, M.: A graph-kernel method for re-identification. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011. LNCS, vol. 6753, pp. 173–182. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21593-3_18 CrossRefGoogle Scholar
  40. 40.
    Wang, K., Wang, Y., Zhang, Z.: On-line signature verification using segment-to-segment graph matching. In: International Conference on Document Analysis and Recognition, pp. 804–808 (2011)Google Scholar
  41. 41.
    Ozdemir, E., Gunduz-Demir, C.: A hybrid classification model for digital pathology using structural and statistical pattern recognition. IEEE Trans. Med. Imaging 32(2), 474–483 (2013)CrossRefGoogle Scholar
  42. 42.
    Núñez, J.M., Bernal, J., Ferrer, M., Vilariño, F.: Impact of keypoint detection on graph-based characterization of blood vessels in colonoscopy videos. In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 22–33. Springer, Cham (2014). doi: 10.1007/978-3-319-13410-9_3 Google Scholar
  43. 43.
    Brun, L., Conte, D., Foggia, P., Vento, M., Villemin, D.: Symbolic learning vs. graph kernels: an experimental comparison in a chemical application. In: East-European Conference on Advances in Databases and Information Systems (2010)Google Scholar
  44. 44.
    Gaüzère, B., Brun, L., Villemin, D.: Two new graph kernels and applications to chemoinformatics. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 112–121. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20844-7_12 CrossRefGoogle Scholar
  45. 45.
    Gaüzère, B., Hasegawa, M., Brun, L., Tabbone, S.: Implicit and explicit graph embedding: comparison of both approaches on chemoinformatics applications. In: Gimel’farb, G., et al. (eds.) SSPR/SPR 2012. LNCS, vol. 7626, pp. 510–512. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34166-3_56 CrossRefGoogle Scholar
  46. 46.
    Koop, D., Freire, J., Silva, C.T.: Visual summaries for graph collections. In: IEEE Pacific Visualization Symposium, pp. 57–64 (2013)Google Scholar
  47. 47.
    Cuzzocrea, A., Coi, J.L., Fisichella, M., Skoutas, D.: Graph-based matching of composite OWL-S services. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6637, pp. 28–39. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20244-5_4 CrossRefGoogle Scholar
  48. 48.
    Niedermann, F.: Deep business optimization: concepts and architecture for an analytical business process optimization platform. Ph.D. thesis, University of Stuttgart (2015)Google Scholar
  49. 49.
    Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: ACM International Conference on Web Search and Data Mining, New York, pp. 543–552 (2014)Google Scholar
  50. 50.
    Hasan, R., Gandon, F.: A machine learning approach to SPARQL query performance prediction. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 266–273 (2014)Google Scholar
  51. 51.
    Bourquin, M., King, A., Robbins, E.: BinSlayer: accurate comparison of binary executables. In: ACM SIGPLAN on Program Protection and Reverse Engineering, New York, pp.1–10 (2013)Google Scholar
  52. 52.
    Elhadi, A.A.E., Maarof, M.A., Osman, A.H.: Malware detection based on hybrid signature behaviour application programming interface call graph. Am. J. Appl. Sci. 9(3), 283–288 (2012)CrossRefGoogle Scholar
  53. 53.
    Kostakis, O., Kinable, J., Mahmoudi, H., Mustonen, K.: Improved call graph comparison using simulated annealing. In: ACM Symposium on Applied Computing, New York, pp. 1516–1523 (2011)Google Scholar
  54. 54.
    Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware classification using weighted contextual api dependency graphs. In: ACM SIGSAC Conference on Computer and Communications Security, New York, pp.1105–1116 (2014)Google Scholar
  55. 55.
    Paul, S.: Exploring story similarities using graph edit distance algorithms (2013)Google Scholar
  56. 56.
    Flórez-Puga, G., González-Calero, P.A., Jiménez-Díaz, G., Díaz-Agudo, B.: Supporting sketch-based retrieval from a library of reusable behaviours. Expert Syst. Appl. 40(2), 531–542 (2013)CrossRefGoogle Scholar
  57. 57.
    Kammer, M., Bodlaender, H., Hage, J.: Plagiarism detection in Haskell programs using call graph matching (2011)Google Scholar
  58. 58.
    Røkenes, H.D.: Graph-based natural language processing: graph edit distance applied to the task of detecting plagiarism (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Stauffer
    • 1
    • 4
  • Thomas Tschachtli
    • 1
  • Andreas Fischer
    • 2
    • 3
  • Kaspar Riesen
    • 1
  1. 1.Institute for Information SystemsUniversity of Applied Sciences and Arts Northwestern SwitzerlandOltenSwitzerland
  2. 2.Department of InformaticsUniversity of FribourgFribourgSwitzerland
  3. 3.Institute for Complex SystemsUniversity of Applied Sciences and Arts Western SwitzerlandFribourgSwitzerland
  4. 4.Department of InformaticsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations