Skip to main content

Osteoarthritis Biology

  • Chapter
  • First Online:
Principles of Bone and Joint Research

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 832 Accesses

Abstract

In today’s ageing society, osteoarthritis has become a major challenge for health-care systems and research alike. Although the molecular mechanisms of tissue degradation are well explored and functional disease markers have been defined, important questions on the pathophysiology of OA still remain unanswered. This chapter provides an overview of the socioeconomic relevance and risk factors of OA, highlights the key features of OA pathology including matrix degradation and pro-inflammatory signalling and discusses current concepts and future perspectives of OA research. It is envisioned that this brief primer to OA biology contributes to elucidate disease mechanisms and to foster critical discussion and concerted scientific efforts in the field of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glyn-Jones S, et al. Osteoarthritis. Lancet. 2015;386:376–87.

    Article  CAS  PubMed  Google Scholar 

  2. Mehrnaz Maleki-Fischbach JMJ. New developments in osteoarthritis. Sex differences in magnetic resonance imaging-based biomarkers and in those of joint metabolism. Arthritis Res Ther. 2010;12:212.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cattano NM, et al. Joint trauma initiates knee osteoarthritis through biochemical and biomechanical processes and interactions. OA Musculoskeletal Medicine. 2013;1:3.

    Article  Google Scholar 

  4. Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin N Am. 2013;39:1–19.

    Article  Google Scholar 

  5. Hoeven TA, et al. Association of atherosclerosis with presence and progression of osteoarthritis: the Rotterdam study. Ann Rheum Dis. 2013;72:646–51.

    Article  PubMed  Google Scholar 

  6. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81:646–56.

    PubMed  PubMed Central  Google Scholar 

  7. Rabenberg M. Arthrose. Gesundheitsberichterstattung des Bundes. 2013;54:1–36.

    Google Scholar 

  8. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis – an untreatable disease? Nat Rev Drug Discov. 2005;4:331–44.

    Google Scholar 

  9. Palazzo C, Ravaud J-F, Papelard A, Ravaud P, Poiraudeau S. The burden of musculoskeletal conditions. PLoS One. 2014;9:e90633.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bachinger E. Vienna health report 2010. City of Vienna, Vienna, 2010.

    Google Scholar 

  11. United Nations, D. O. E., Social Affairs, P. D. World population prospects: the 2012 revision. United Nations New York, 2013.

    Google Scholar 

  12. Turkiewicz A, Petersson IF, Björk J, Dahlberg LE, Englund M. The consultation prevalence of osteoarthritis 2030 may increase by 50%: prognosis for Sweden. Osteoarthr. Cartilage. 2013;21:S160–1.

    Article  Google Scholar 

  13. Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24:1–12.

    Article  PubMed  Google Scholar 

  14. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11(2):224.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Umlauf D, Frank S, Pap T, Bertrand J. Cartilage biology, pathology, and repair. Cell Mol Life Sci. 2010;67:4197–211.

    Article  CAS  PubMed  Google Scholar 

  16. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625–35.

    Article  CAS  PubMed  Google Scholar 

  17. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3:107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drissi H, Zuscik M, Rosier R, O’Keefe R. Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Asp Med. 2005;26:169–79.

    Article  CAS  Google Scholar 

  19. Pitsillides AA, Beier F. Cartilage biology in osteoarthritis —lessons from developmental biology. Nat Rev Rheumatol. 2011;7:654–63.

    Article  CAS  PubMed  Google Scholar 

  20. Fuerst M, et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 2009;60:2694–703.

    Article  CAS  PubMed  Google Scholar 

  21. van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil. 2012;20:223–32.

    Article  PubMed  Google Scholar 

  22. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–43.

    Article  CAS  PubMed  Google Scholar 

  23. Song R-H, et al. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 2007;56:575–85.

    Article  CAS  PubMed  Google Scholar 

  24. Goekoop RJ, et al. Determinants of absence of osteoarthritis in old age. Scand J Rheumatol. 2011;40:68–73.

    Article  CAS  PubMed  Google Scholar 

  25. Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol. 2011;23:492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62:791–801.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil. 2010;18:24–33.

    Article  CAS  PubMed  Google Scholar 

  28. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartilage. 2013;21:16–21.

    Article  CAS  Google Scholar 

  29. Fowler-Brown A, Kim DH, Shi L, Marcantonio E, Wee CC, Shmerling RH, Leveille S. The mediating effect of leptin on the relationship between body weight and knee osteoarthritis in older adults. Arthritis Res. 2015;67(1):169–75.

    Google Scholar 

  30. Dumond H, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48:3118–29.

    Article  CAS  PubMed  Google Scholar 

  31. Fernández-Moreno M, Rego I, Carreira-Garcia V, Blanco FJ. Genetics in osteoarthritis. Curr Genomics. 2008;9:542–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Consortium A, Collaborators A. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet. 2012;380:815–23.

    Article  Google Scholar 

  33. Reynard LN, Loughlin J. The genetics and functional analysis of primary osteoarthritis susceptibility. Expert Rev Mol Med. 2013;15:e2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rego-Pérez I, et al. Mitochondrial DNA haplogroups and serum levels of proteolytic enzymes in patients with osteoarthritis. Ann Rheum Dis. 2011;70:646–52.

    Article  PubMed  Google Scholar 

  35. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64:1263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pearle AD, et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthr Cartilage. 2007;15:516–23.

    Article  CAS  Google Scholar 

  37. Toegel S, et al. Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol. 2016;196:1910–21.

    Article  CAS  PubMed  Google Scholar 

  38. Weinmann D, et al. Galectin-3 induces a pro-degradative/inflammatory Gene signature in human chondrocytes, teaming up with Galectin-1 in osteoarthritis pathogenesis. Sci Rep. 2016;6:39112.

    Google Scholar 

  39. Kim HA, et al. The catabolic pathway mediated by toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 2006;54:2152–63.

    Article  CAS  PubMed  Google Scholar 

  40. Goekoop RJ, et al. Low innate production of interleukin-1beta and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthr Cartil. 2010;18:942–7.

    Article  CAS  PubMed  Google Scholar 

  41. Attur M, et al. Increased interleukin-1β gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis. Arthritis Rheum. 2011;63:1908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Freund A, Orjalo AV, Desprez P-Y, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16:238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:419–33.

    Article  PubMed  Google Scholar 

  44. Thambyah A, Broom N. On new bone formation in the pre-osteoarthritic joint. Osteoarthr Cartil. 2009;17:456–63.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma AR, Jagga S, Lee S-S, Nam J-S. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci. 2013;14:19805–30.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bailey AJ, Mansell JP, Sims TJ, Banse X. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41:349–58.

    CAS  PubMed  Google Scholar 

  47. Sanchez C, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum. 2008;58:442–55.

    Article  CAS  PubMed  Google Scholar 

  48. Amin AK, Huntley JS, Simpson AHRW, Hall AC. Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J Bone Joint Surg Br. 2009;91:691–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sanchez C, et al. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, −1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthr Cartil. 2005;13:979–87.

    Article  CAS  PubMed  Google Scholar 

  50. Jiao K, et al. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone. 2011;48:362–71.

    Article  CAS  PubMed  Google Scholar 

  51. Neogi T. Clinical significance of bone changes in osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4:259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthr Cartil. 2014;22(5):609–21.

    Google Scholar 

  53. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11:599–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol. 2013;9:328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blom AB, et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum. 2009;60:501–12.

    Article  CAS  PubMed  Google Scholar 

  56. Lane NE, et al. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum. 2007;56:3319–25.

    Article  CAS  PubMed  Google Scholar 

  57. Sondergaard B-C, et al. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthr Cartil. 2010;18:279–88.

    Article  PubMed  Google Scholar 

  58. Prasadam I, et al. Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone. 2010;46:226–35.

    Article  CAS  PubMed  Google Scholar 

  59. Prasadam I, et al. ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum. 2010;62:1349–60.

    Google Scholar 

  60. van der Kraan PM. Osteoarthritis year 2012 in review: biology. Osteoarthr Cartil. 2012;20:1447–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Toegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Toegel, S. (2017). Osteoarthritis Biology. In: Pietschmann, P. (eds) Principles of Bone and Joint Research. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58955-8_12

Download citation

Publish with us

Policies and ethics