Advertisement

Pathogenetic Concepts of Joint Diseases

  • Jan LeipeEmail author
  • Hendrik Schulze-Koops
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

The wide spectrum of joint disease in autoimmune disorders ranges from destructive/erosive processes affecting the synovium, cartilage, and bone, e.g., in rheumatoid arthritis (joint erosions), to ossifying changes with formation of new bone, e.g., in spondyloarthritis (syndesmophytes) or in osteoarthritis (osteophytes). Of note, both types of joint pathologies can be observed together in a certain disease, e.g., in psoriatic arthritis. These changes can be detected with good sensitivity and specificity by imaging studies including X-ray, ultrasound, magnetic resonance imaging, and computed tomography. On a molecular level, catabolic and anabolic molecular pathways are underlying the different patterns of joint disease (destructive, proliferative). A dysfunction in joint remodeling results in an imbalance of degradation and formation of bone and cartilage. Whereas catabolic pathways such as those induced upon RANKL/RANK (receptor activator of nuclear factor κB (NF-κB) ligand), cathepsin K, and Dickkopf-1 (Dkk-1) engagement induce bone resorption and thereby erosive disease, anabolic pathways such as those involving bone morphogenic proteins (BMP) and wingless-type-like (Wnt) seem to favor new bone formation including osteophytes, syndesmophytes, and ankylosis. In addition, there are other pathways such as those mediated by hedgehog proteins that may have a dual function in arthritis, which are associated with catabolic or anabolic joint remodeling dependent on other factors. Future therapies might target these molecular pathways to specifically interfere with the imbalanced catabolic or anabolic joint remodeling in arthritis [1].

References

  1. 1.
    Beyer C, Schett G. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Novel targets in bone and cartilage. Best Pract Res Clin Rheumatol. 2010;24(4):489–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Santiago MB. Miscellaneous non-inflammatory musculoskeletal conditions. Jaccoud’s arthropathy. Best Pract Res Clin Rheumatol. 2011;25(5):715–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Sakkas LI, Alexiou I, Simopoulou T, Vlychou M. Enthesitis in psoriatic arthritis. Semin Arthritis Rheum. 2013;43(3):325–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Szekanecz Z, Pakozdi A, Szentpetery A, Besenyei T, Koch AE. Chemokines and angiogenesis in rheumatoid arthritis. Front Biosci (Elite Ed). 2009;1:44–51.Google Scholar
  5. 5.
    Gierut A, Perlman H, Pope RM. Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am. 2010;36(2):271–96.CrossRefGoogle Scholar
  6. 6.
    Rock KL, Kataoka H, Lai JJ. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013;9(1):13–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Cascao R, Rosario HS, Souto-Carneiro MM, Fonseca JE. Neutrophils in rheumatoid arthritis: more than simple final effectors. Autoimmun Rev. 2010;9(8):531–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Greven DE, Cohen ES, Gerlag DM, Campbell J, Woods J, Davis N, et al. Preclinical characterisation of the GM-CSF receptor as a therapeutic target in rheumatoid arthritis. Ann Rheum Dis. 2014;74(10):1924–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Burmester GR, Weinblatt ME, McInnes IB, Porter D, Barbarash O, Vatutin M, et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis. 2013;72(9):1445–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Malone DG, Wilder RL, Saavedra-Delgado AM, Metcalfe DD. Mast cell numbers in rheumatoid synovial tissues. Correlations with quantitative measures of lymphocytic infiltration and modulation by antiinflammatory therapy. Arthritis Rheum. 1987;30(2):130–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Daien CI, Gailhac S, Audo R, Mura T, Hahne M, Combe B, et al. High levels of natural killer cells are associated with response to tocilizumab in patients with severe rheumatoid arthritis. Rheumatology (Oxford). 2014;54(4):601–8.CrossRefGoogle Scholar
  12. 12.
    Fort MM, Leach MW, Rennick DM. A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J Immunol. 1998;161(7):3256–61.PubMedGoogle Scholar
  13. 13.
    Silverman GJ, Carson DA. Roles of B cells in rheumatoid arthritis. Arthritis Res Ther. 2003;5(Suppl 4):S1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bugatti S, Vitolo B, Caporali R, Montecucco C, Manzo A. B cells in rheumatoid arthritis: from pathogenic players to disease biomarkers. Biomed Res Int. 2014;2014:681678.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leipe J, Skapenko A, Lipsky PE, Schulze-Koops H. Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther. 2005;7(3):93.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. Arthritis Res Ther. 2005;7(Suppl 2):S4–14.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Leipe J, Chang HD. Effector T cells. Z Rheumatol. 2015;74(1):14–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Miltenburg AM, van Laar JM, de Kuiper R, Daha MR, Breedveld FC. T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset. Scand J Immunol. 1992;35:603–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Kusaba M, Honda J, Fukuda T, Oizumi K. Analysis of type 1 and type 2 T cells in synovial fluid and peripheral blood of patients with rheumatoid arthritis. J Rheumatol. 1998;25:1466–71.PubMedGoogle Scholar
  20. 20.
    Canete JD, Martinez SE, Farres J, Sanmarti R, Blay M, Gomez A, et al. Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis. 2000;59(4):263–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schulze-Koops H, Lipsky PE, Kavanaugh AF, Davis LS. Elevated Th1- or Th0-like cytokine mRNA in peripheral circulation of patients with rheumatoid arthritis: modulation by treatment with anti-ICAM-1 correlates with clinical benefit. J Immunol. 1995;155:5029–37.PubMedGoogle Scholar
  22. 22.
    Schulze-Koops H, Davis LS, Haverty TP, Wacholtz MC, Lipsky PE. Reduction of Th1 cell activity in the peripheral circulation of patients with rheumatoid arthritis after treatment with a non-depleting humanized monoclonal antibody to CD4. J Rheumatol. 1998;25:2065–76.PubMedGoogle Scholar
  23. 23.
    Davis LS, Schulze-Koops H, Lipsky PE. Rheumatoid synovial memory T cells have been primed in vivo to be interferon-gamma producers. Arthritis Rheum. 1997;40:S532.Google Scholar
  24. 24.
    Miyata M, Ohira H, Sasajima T, Suzuki S, Ito M, Sato Y, et al. Significance of low mRNA levels of interleukin-4 and -10 in mononuclear cells of the synovial fluid of patients with rheumatoid arthritis. Clin Rheumatol. 2000;19(5):365–70.Google Scholar
  25. 25.
    James EA, Rieck M, Pieper J, Gebe JA, Yue BB, Tatum M, et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 2014 Jul;66(7):1712–22.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol. 1997;158(11):5507–13.PubMedGoogle Scholar
  27. 27.
    Manoury-Schwartz B, Chiocchia G, Bessis N, Abehsira-Amar O, Batteux F, Muller S, et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol. 1997;158(11):5501–6.PubMedGoogle Scholar
  28. 28.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9(6):641–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.CrossRefPubMedGoogle Scholar
  33. 33.
    Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med. 2007;204(12):2803–12.Google Scholar
  34. 34.
    Lubberts E. Role of T lymphocytes in the development of rheumatoid arthritis. Implications for treatment. Curr Pharm Des. 2015;21(2):142–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42(5):963–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52.Google Scholar
  37. 37.
    Raza K, Falciani F, Curnow SJ, Ross EJ, Lee CY, Akbar AN, et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther. 2005;7(4):R784–95.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006;54(4):1122–31.CrossRefPubMedGoogle Scholar
  39. 39.
    Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 2009;60(6):1647–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H, et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum. 2010;62(10):2876–85.CrossRefPubMedGoogle Scholar
  41. 41.
    Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171(11):6173–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 2002;46(3):802–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888–98.CrossRefPubMedGoogle Scholar
  44. 44.
    Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41(3):414–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, van der Heijde D, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373(14):1329–39.CrossRefPubMedGoogle Scholar
  46. 46.
    Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an interleukin-17A inhibitor, in Ankylosing spondylitis. N Engl J Med. 2015;373(26):2534–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10(8):857–63.CrossRefPubMedGoogle Scholar
  48. 48.
    Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009;10(8):864–71.CrossRefPubMedGoogle Scholar
  49. 49.
    van Hamburg JP, Corneth OB, Paulissen SM, Davelaar N, Asmawidjaja PS, Mus AM, et al. IL-17/Th17 mediated synovial inflammation is IL-22 independent. Ann Rheum Dis. 2013;72(10):1700–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Leipe J, Schramm MA, Grunke M, Baeuerle M, Dechant C, Nigg AP, et al. Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann Rheum Dis. 2011;70(8):1453–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Ren J, Feng Z, Lv Z, Chen X, Li J. Natural killer-22 cells in the synovial fluid of patients with rheumatoid arthritis are an innate source of interleukin 22 and tumor necrosis factor-{alpha}. J Rheumatol. 2011;38(10):2112–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang L, Li JM, Liu XG, Ma DX, Hu NW, Li YG, et al. Elevated Th22 cells correlated with Th17 cells in patients with rheumatoid arthritis. J Clin Immunol. 2011;31(4):606–14.CrossRefPubMedGoogle Scholar
  53. 53.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.PubMedGoogle Scholar
  54. 54.
    Jiao Z, Wang W, Jia R, Li J, You H, Chen L, et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36(6):428–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Beavis PA, Gregory B, Green P, Cribbs AP, Kennedy A, Amjadi P, et al. Resistance to regulatory T cell-mediated suppression in rheumatoid arthritis can be bypassed by ectopic foxp3 expression in pathogenic synovial T cells. Proc Natl Acad Sci U S A. 2011;108(40):16717–22.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cooles FA, Isaacs JD, Anderson AE. Treg cells in rheumatoid arthritis: an update. Curr Rheumatol Rep. 2013;15(9):352.CrossRefPubMedGoogle Scholar
  57. 57.
    Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004;200(3):277–85.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med. 2013;19(3):322–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Flores-Borja F, Jury EC, Mauri C, Ehrenstein MR. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2008;105(49):19396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McGovern JL, Nguyen DX, Notley CA, Mauri C, Isenberg DA, Ehrenstein MR. Th17 cells are restrained by Treg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 2012;64(10):3129–38.Google Scholar
  61. 61.
    Huang Z, Yang B, Shi Y, Cai B, Li Y, Feng W, et al. Anti-TNF-alpha therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis. Cell Immunol. 2012;279(1):25–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Park JS, Lim MA, Cho ML, Ryu JG, Moon YM, Jhun JY, et al. p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice. Arthritis Rheum. 2013;65(4):949–59.CrossRefPubMedGoogle Scholar
  63. 63.
    Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, et al. Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol. 2014;66(9):2344–54.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhou Q, Haupt S, Kreuzer JT, Hammitzsch A, Proft F, Neumann C, et al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis. 2014;74(6):1265–74.CrossRefPubMedGoogle Scholar
  65. 65.
    Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, et al. Methotrexate restores regulatory T cell function through demethylation of the foxp3 upstream enhancer in patients with rheumatoid arthritis. Arthritis Rheumatol. 2015;67(5):1182–92.CrossRefPubMedGoogle Scholar
  66. 66.
    Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986;322(6079):547–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319(6053):516–8.Google Scholar
  68. 68.
    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10:4025–31.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med. 2000;343(22):1594–602.CrossRefPubMedGoogle Scholar
  70. 70.
    Firestein GS, Alvaro-Gracia JM, Maki R. Quantitative analysis of cytokine gene expression in rheumatoid arthritis. [published erratum appears in J Immunol 1990 Aug 1; 145(3):1037]. JImmunol. 1990;144:3347–53.Google Scholar
  71. 71.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Leipe J, Skapenko A, Schulze-Koops H. Th17 cells - a new proinflammatory T cell population and its role in rheumatologic autoimmune diseases. Z Rheumatol. 2009;68(5):405–8.Google Scholar
  73. 73.
    Guerne PA, Zuraw BL, Vaughan JH, Carson DA, Lotz M. Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. J Clin Invest. 1989;83(2):585–92.Google Scholar
  74. 74.
    Nam JL, Ramiro S, Gaujoux-Viala C, Takase K, Leon-Garcia M, Emery P, et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2013 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2014;73(3):516–28.CrossRefPubMedGoogle Scholar
  75. 75.
    Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatology (Oxford). 2014;53(9):1560–9.CrossRefGoogle Scholar
  76. 76.
    Alten R, Gomez-Reino J, Durez P, Beaulieu A, Sebba A, Krammer G, et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study. BMC Musculoskelet Disord. 2011;12:153.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Pavelka K, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381(9877):1541–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Quattrocchi E, Dallman MJ, Feldmann M. Adenovirus-mediated gene transfer of CTLA-4Ig fusion protein in the suppression of experimental autoimmune arthritis. Arthritis Rheum. 2000;43(8):1688–97.CrossRefPubMedGoogle Scholar
  79. 79.
    Melet J, Mulleman D, Goupille P, Ribourtout B, Watier H, Thibault G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum. 2013;65(11):2783–90.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IVLudwig-Maximilians-University of MunichMunichGermany

Personalised recommendations