Skip to main content

Biotechnological Interventions for Improving Sucrose Accumulation in Sugarcane

  • Chapter
  • First Online:
Sugarcane Biotechnology: Challenges and Prospects

Abstract

Sugarcane is a C4 grass grown in tropical and subtropical regions, cultivated in 22 million hectares in more than 100 countries (FAOSTAT 2008, http://faostatfaoorg/defaultaspx). Major sugar requirement of the world is met by sugarcane. It contributes almost 75% of total sugar produced from all the sugar crops. Sugarcane is also used for generation of biofuel and bagasse as lignocellulosic raw material for paper industries. Sucrose content and cane weight are the key traits determining the income of sugarcane farmers and industries. In general, sugarcane varieties in cultivation are capable to accumulate higher sucrose in the stems to levels more than 50% of the stem dry weight. Ability of sugarcane to produce and store higher concentration of sucrose in the mature internodes has made the crop more suitable for commercial sucrose extraction. In this chapter, we reviewed the work carried out by various sugarcane researchers around the world on sugarcane biotechnology in relation to sucrose enhancement using various molecular approaches and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basnayake SWV, Morgan TC, Wu L, Birch RG (2012) Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant Biotechnol J 10:217–225

    Article  CAS  PubMed  Google Scholar 

  • Batta SK, Kaur S, Mann APS (2002) Sucrose accumulation and maturity behavior in sugarcane is related to invertase activities under subtropical conditions. Int Sugar J 104:10–13

    Google Scholar 

  • Batta SK, Pant NC, Thind KS, Uppal SK (2008) Sucrose accumulation and expression of enzyme activities in early and mid-late maturing sugarcane genotypes. Sugar Tech 10(4):319–326

    Article  CAS  Google Scholar 

  • Bekker JPL (2007) Genetic manipulation of the cell wall composition of sugarcane. PhD Thesis, University of Stellenbosch, Stellenbosch

    Google Scholar 

  • Botha FC, Black KG (2000) Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Aust J Plant Physiol 27:81–85. doi:10.1071/PP99098

    CAS  Google Scholar 

  • Botha FC, Sawyer BJB, Birch RG (2001) Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acid invertase activity. Proc Int Soc Sugar Cane Technol 24:588–591

    Google Scholar 

  • Braun DM, Slewinski TL (2009) Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol 149:71–81. doi:10.1104/pp.108.129049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkle L, Hibberd JM, Quick WP, Kühn C, Hirner B, Frommer WB (1998) The H± sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol 118:59–68. doi:10.1104/pp.118.1.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussis D, Heineke D, Sonnewald U, Willmitzer L, Raschke K, Heldt HW (1997) Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast vacuole or cytosol. Planta 206:126–136

    Google Scholar 

  • Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TWA, Canesin LEC, Pinto LR, Carneiro MS, Garcia AAF, Souza AP, Vicentini R (2014) De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One 9:e88462

    Article  PubMed  PubMed Central  Google Scholar 

  • Carson D, Huckett B, Botha F (2002) Differential gene expression in sugarcane leaf and intermodal tissues of varying maturity. S Afr J Bot 68:434–442

    Article  CAS  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386. doi:10.1023/A:1023957214644

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Rae AL, Nielsen JM, Perroux JM, Bonnett GD, Manners JM (2015) Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families. Plant Mol Biol 89:607–628

    Article  CAS  PubMed  Google Scholar 

  • Chandra A, Jain R, Rai RK, Solomon S (2011) Revisiting the source–sink paradigm in sugarcane. Curr Sci 100:978–980

    Google Scholar 

  • Chandra A, Jain R, Solomon S (2012) Complexities of invertases controlling sucrose accumulation and retention in sugarcane. Curr Sci 102:857–866

    CAS  Google Scholar 

  • Chandra A, Verma PK, Islam MN, Grisham MP, Jain R, Sharma A, Roopendra K, Singh K, Singh P, Verma I, Solomon S, Adams W (2015) Expression analysis of genes associated with sucrose accumulation in sugarcane (spp. hybrids) varieties differing in content and time of peak sucrose storage. Plant Biol 17(3):608–617

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Qu X, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211. doi:10.1126/science.1213351

    Article  CAS  PubMed  Google Scholar 

  • Chong BF, Bonnett GD, Glassop D, O’Shea MG, Brumbley SM (2007) Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. Plant Biotechnol J 5:240–253

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH: examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers: a first decade of research. In: International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress. pp 556–559

    Google Scholar 

  • Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol 28(2):294–298

    Article  Google Scholar 

  • FAOSTAT (2008) http://faostatfaoorg/defaultaspx

    Google Scholar 

  • Goldner W, Thom M, Maretzki A (1991) Sucrose metabolism in sugarcane cell suspension cultures. Plant Sci 73:143–147. doi:10.1016/0168-9452(91)90021-Y

    Article  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Groenewald JH, Botha FC (2007) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92

    Article  PubMed  Google Scholar 

  • Grof CPL, Campbell JA (2001) Sugarcane sucrose metabolism: scope for molecular manipulation. Aust J Plant Physiol 28:1–12

    CAS  Google Scholar 

  • Grof CPL, Albertson PL, Bursle J, Perroux JM, Bonnett GD, Manners JM (2007) Sucrosephosphate synthase a biochemical marker of high sucrose accumulation in sugarcane. Crop Sci 47:1530–1539. doi:10.2135/cropsci2006.12.0825

    Article  CAS  Google Scholar 

  • Hamerli D, Birch RG (2011) Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnol J 9:32–37

    Article  CAS  PubMed  Google Scholar 

  • Hatch MD, Glasziou KT (1963) Sugar accumulation cycle in sugarcane II Relationship of invertase activity to sugar content and growth rate in storage tissue of plants grown in controlled environments. Plant Physiol 38:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DL, Gao Y, Gui Y, Chen Z, Qin C, Wang M, Liao Q, Yang L, Li Y (2016) Transcriptome of high-sucrose sugarcane variety GT35. Sugar Tech 18(5):520–528

    Article  Google Scholar 

  • Inman-Bamber G, Jackson P, Bonnett G, Morgan T (2011) Have we reached peak CCS? In: Bruce RC (ed) 33rd Annual Conference of the Australian Society of Sugar Cane Technologists. Curran Associates Inc, Red Hook, pp: 1–9

    Google Scholar 

  • Koch KE (1996) Carbohydrate modulated gene expression in plants. Ann Rev Plant Physiol Plant Mol Biol 47:509–540. doi:10.1146/annurev.arplant.47.1.509

    Article  CAS  Google Scholar 

  • Koch KE (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. doi:10.1016/j.pbi.2004.03.014

    Article  CAS  PubMed  Google Scholar 

  • Lingle SE (1989) Evidence for the uptake of sucrose intact into sugarcane internodes. Plant Physiol 90(1):6–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Albert HH, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different sub-cellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030

    CAS  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829. doi:10.1016/j.jplph.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2009) Supply and demand: sink regulation of sugar accumulation in sugarcane. J Exp Bot 60:357–364. doi:10.1093/jxb/ern310

    Article  CAS  PubMed  Google Scholar 

  • van der Merwe M, Groenewald JH, Stitt M, Kossmann J, Botha F (2010) Downregulation of pyrophosphate-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. Planta 231:595–608. doi:10.1007/s00425-009-1069-1

    Article  PubMed  Google Scholar 

  • Moore PH (1995) Temporal and spatial regulation of sucrose metabolism in the sugarcane stem. Aust J Plant Physiol 22:661–679

    Article  CAS  Google Scholar 

  • Nell JS (2007) Genetic manipulation of sucrose-storing tissue to produce alternative products. PhD thesis, University of Stellenbosch, Stellenbosch. http://scholar.sun.ac.za/handle/10019.1/1359

    Google Scholar 

  • Ohyama A, Ito H, Sato T, Nishimura S, Imai T, Hirai M (1995) Supression of acidic invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell Physiol 36:369–376

    Article  CAS  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vencio RZ, Oliveira KC et al (2005) Transcription profiling of signal transduction related genes in sugarcane tissues. DNA Res 12:27–38

    Article  CAS  PubMed  Google Scholar 

  • Patrick JE (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Ann Rev Plant Physiol Plant Mol Biol 48:191–222. doi:10.1146/annurev.arplant.48.1.191

    Article  CAS  Google Scholar 

  • Patrick JW, Botha FC, Birch RG (2013) Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol J 11:142–156. doi:10.1111/pbi.12002

    Article  CAS  PubMed  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genomics 284:65–73

    Article  CAS  Google Scholar 

  • Prathima PT, Suresha GS, Selvi A (2011) Expression profiling of key genes involved in sucrose metabolism from different Saccharum sps and ‘Co’ Hybrids. J Sugarcane Res 1(2):35–42

    Google Scholar 

  • Rae AL, Grof CPL, Casu RE, Bonnett GD (2005a) Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crops Res 92:159–168. doi:10.1016/j.fcr.2005.01.027

    Article  Google Scholar 

  • Rae AL, Perroux JM, Grof CPL (2005b) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825. doi:10.1007/s00425-004-1399-y

    Article  CAS  PubMed  Google Scholar 

  • Rae AL, Jackson MA, Nguyen CH, Bonnett GD (2009) Functional specialisation of vacuoles in sugarcane leaf and stem. Trop. Plant Biol 2:13–22. doi:10.1007/s12042-008-9019-9

    CAS  Google Scholar 

  • Reinders A, Sivitz AB, Hsi A, Grof CPL, Perroux JM, Ward JM (2006) Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Plant Cell Environ 29:1871–1880. doi:10.1111/j.1365-3040.2006.01563.x

    Article  CAS  PubMed  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J 13:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossouw D, Bosch S, Kossmann J, Botha FC, Groenewald JH (2007) Down-regulation of neutral invertase activity in transgenic sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation. Funct Plant Biol 34:490–498

    Article  CAS  Google Scholar 

  • Rossouw D, Kossmann J, Botha FC, Groenewald JH (2010) Reduced neutral invertase activity in the culm tissues of transgenic sugarcane plants results in a decrease in respiration and sucrose cycling and an increase in the sucrose to hexose ratio. Funct Plant Biol 37:22–31. doi:10.1071/FP08210

    Article  CAS  Google Scholar 

  • Sacher JA, Hatch MD, Glasziou KT (1963) Sugar accumulation cycle in sugarcane III physical and metabolic aspects in immature storage tissues. Plant Physiol 38:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990) Expression of yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly growth influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044

    Google Scholar 

  • Schafer EW, Rohwer JM, Botha FC (2004) Protein level expression and localization of sucrose synthase in sugarcane culm. Physiol Plant 121:187–195. doi:10.1111/j.0031-9317.2004.00316.x

    Article  PubMed  Google Scholar 

  • Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L (1991) Transgenic tobacco plants expressing yeast derived invertase in the cytosol vacuole or the apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J 1:95–106

    Article  CAS  PubMed  Google Scholar 

  • Swart JC (2007) The characterization of vacuolar pyrophosphate activity in sugarcane. MSc dissertation, University of Stellenbosch, Stellenbosch

    Google Scholar 

  • Tang GQ, Luscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uys L, Botha FC, Hofmeyr JHS, Rohwer JM (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–2392. doi:10.1016/j.phytochem.2007.04.023

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Upadhyay SK, Verma PC, Solomon S, Singh SB (2011) Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol 13:325–332. doi:10.1111/j.1438-8677.2010.00379.x

    Article  CAS  PubMed  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Morgan TE (2005) Effects of tissue culture biolistic transformation and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Aust J Agric Res 56:57–68. doi:10.1071/AR04159

    Article  CAS  Google Scholar 

  • Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unraveling sucrose accumulation. Field Crops Res 92:149–158. doi:10.1016/j.fcr.2005.01.012

  • Welbaum GE, Meinzer FC (1990) Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiol 93:1147–1153. doi:10.1104/pp.93.3.1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker A, Botha FC (1997) Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol 115:1651–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117. doi:10.1111/j.1467-7652.2006.00224.x

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Birch RG (2010) Physiological basis for enhanced sucrose accumulation in an engineered sugarcane cell line. Funct Plant Biol 37:1161–1174. doi:10.1071/FP10055

    Article  CAS  Google Scholar 

  • Wu Q, Xu L, Guo J, Su Y, Que Y (2013) Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. Biomed Res Int 2013:298920

    PubMed  PubMed Central  Google Scholar 

  • Zhu YJ, Komor E, Moore PH (1997) Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiol 115:609–616. doi:10.1104/pp.115.2.609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.) J Integr Plant Biol 48(4):453–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Suresha Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Suresha, G.S., Mahadevaiah, C., Appunu, C. (2017). Biotechnological Interventions for Improving Sucrose Accumulation in Sugarcane. In: Mohan, C. (eds) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-58946-6_8

Download citation

Publish with us

Policies and ethics