Skip to main content

Unraveling the Sugarcane Genome: Progress Made So Far and Challenges Ahead

  • Chapter
  • First Online:
Sugarcane Biotechnology: Challenges and Prospects

Abstract

Sugarcane (Saccharum spp.) is a major crop grown for sugar and biofuel in tropical and subtropical regions around the world. Sugarcane has a high level of polyploidy, large and complex genome. There is a constant increase in demand of sugarcane worldwide, to meet this demand there is a need in improving the sugarcane yield, sucrose content, increasing growth rate, abiotic and biotic stress tolerance, etc. Researchers have been using conventional breeding efficiently to improve the sugarcane for many years. Present situation demands the improvement in sugarcane varieties at faster rate than which the conventional breeding technique can provide. It is possible to achieve faster improvement only when researchers understand the genome of the plant. Genetics and genome studies have given a better path to develop better varieties. Understanding of sugarcane genome can help breeders to support the conventional breeding in selecting the parents and traits needed. In spite of the complexity, sugarcane genome is been successfully studied and in recent past good progress have been made by genome sequencing strategy, i.e., bacterial artificial chromosome (BAC) libraries. Study on genetic diversity among the species of sugarcane was carried out by RFLP, AFLP, RAPD, SRAP, TRAP and so on. In late 1990s fluorescent in situ hybridization (FISH) technique was used to physically map two S. officinarum and three S. robustum clones. Later using molecular cytogenetic technique of FISH, many other clones were studied. Quantitative trait loci (QTLs) have been used to screen variety with sugar content, sugar yield, disease resistance, etc. Researchers in Brazil have developed SUCEST database which consist of over 230,000 Expressed Sequence Tags (ESTs) which can be used for detection of molecular polymorphisms, gene expression profiles and gene discovery. In this chapter we discuss about the progress made so far and challenges faced during the study of sugarcane genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631

    Article  CAS  PubMed  Google Scholar 

  • Aitken K, Paul B, Anne R (2016) The first sugarcane genome assembly: how can we use it? In: Proceedings of the Australian Society Sugar Cane Technology, p 38

    Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Gen 117(7):1191–1203

    Article  CAS  Google Scholar 

  • Aitken KS, Li JC, Jackson P, Piperidis G, McIntyre CL (2006a) AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Crop Pasture Sci 57(11):1167–1184

    Article  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2006b) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp) cultivar × Saccharum officinarum population. Theor Appl Gen 112(7):1306–1317

    Article  CAS  Google Scholar 

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Gen 102(8):1200–1205

    Article  CAS  Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46(1):448–455

    Article  CAS  Google Scholar 

  • Aneja B, Yadav NR, Chawla V, Yadav RC (2012) Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol Breed 30(4):1635–1648

    Article  CAS  Google Scholar 

  • Ardiel GS, Grewal TS, Deberdt P, Rossnagel BG, Scoles GJ (2002) Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theor Appl Gen 104(2–3):457–464

    Article  CAS  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, Flick E, Rohlfing T, Fries J, Bradford K, McMenamy J (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3(1):13

    Article  Google Scholar 

  • Bombarely A, Menda N, Tecle IY, Buels RM, Strickler S, Fischer-York T, Pujar A, Leto J, Gosselin J, Mueller LA (2011) The sol genomics network (solgenomics net): growing tomatoes using Perl. Nucleic Acids Res 39(Database):D1149–D1155

    Article  CAS  PubMed  Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7(4):347–354

    Article  CAS  PubMed  Google Scholar 

  • Carson D, Botha F (2002) Genes expressed in sugarcane maturing internodal tissue. Plant Cell Rep 20(11):1075–1081

    Article  CAS  Google Scholar 

  • Carson DL, Botha FC (2000) Preliminary analysis of expressed sequence tags for sugarcane. Crop Sci 40(6):1769–1779

    Article  CAS  Google Scholar 

  • Casu RE, Grof CP, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52(2):371–386

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20

    Article  CAS  Google Scholar 

  • Choi S, Wing RA (2000) The construction of bacterial artificial chromosome (BAC) libraries in plant molecular biology manual. Springer, Dordrecht, pp 1–28

    Google Scholar 

  • Choi S, Creelman RA, Mullet JE, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol Biol Rep 13(2):124–128

    Article  Google Scholar 

  • Costa EA, Anoni CO, Mancini MC, Santos FRC, Marconi TG, Gazaffi R, Pastina MM, Perecin D, Mollinari M, Xavier MA, Pinto LR (2016) QTL mapping including codominant SNP markers with ploidy level information in a sugarcane progeny. Euphytica 211(1):1–16

    Article  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109(1–3):27–33

    Article  PubMed  CAS  Google Scholar 

  • da Silva EF, de Sousa SB, da Silva GF, Sousa NR, do Nascimento Filho FJ, Hanada RE (2016) TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var sorbilis. Plant Gene 6:43–47

    Article  CAS  Google Scholar 

  • Danesh D, Penuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND (1998) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Gen 96(2):196–202

    Article  CAS  Google Scholar 

  • Daniels J, Daniels C (1975) Geographical, historical and cultural aspect of the origin of the Indian and Chinese sugarcane S barberi and S sinense. Sugarcane Breed Newsl 36:4–23

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution sugarcane improvement through breeding, vol 7. Elsevier, Amsterdam, pp 7–84

    Book  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D'Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Gen 92(8):1059–1064

    Article  CAS  Google Scholar 

  • de Mendonça Vilela M, Del-Bem LE, Van Sluys MA, de Setta N, Kitajima JP, Cruz GMQ, Sforça DA, de Souza AP, Ferreira PCG, Grativol C, Cardoso-Silva CB (2017) Analysis of three sugarcane homo/homeologous regions suggests independent polyploidization events of Saccharum officinarum and Saccharum spontaneum. Genome Biol Evol 9(2):266–278

    Google Scholar 

  • De Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GMQ, Del Bem LE, Vicentini R, Nogueira FTS, Campos RA, Nunes SL, Turrini PCG, Vieira AP (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics 15(1):540

    Article  PubMed  PubMed Central  Google Scholar 

  • Dharshini S, Chakravarthi M, Ashwin Narayan J, Manoj VM, Naveenarani M, Kumar R, Meena M, Ram B, Appunu C (2016) De novo sequencing and transcriptome analysis of a low temperature tolerant Saccharum spontaneum clone IND 00-1037. J Biotechnol 231:280–294

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Glaszmann JC, Rao S, Berding N (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250(4):405–413

    Article  PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41(2):221–225

    Article  Google Scholar 

  • D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus with molecular markers and DNA in situ hybridization. Theor Appl Gen 91(2):320–326

    Google Scholar 

  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J, Goldbach RW (1999) Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv Stevens and its application to physically map the Sw-5 locus. Mol Breed 5(2):197–207

    Article  CAS  Google Scholar 

  • Frijters ACJ, Zhang Z, van Damme M, Wang GL, Ronald PC, Michelmore RW (1997) Construction of a bacterial artificial chromosome library containing large Eco RI and Hin dIII genomic fragments of lettuce. Theor Appl Gen 94(3-4):390–399

    Article  CAS  Google Scholar 

  • Glaszmann JC, Noyer JL, Fautret A, Feldmann R, Lanaud C (1989) Biochemical genetic markers in sugarcane. Theor Appl Gen 78(4):537–543

    Article  CAS  Google Scholar 

  • Gonzales MD, Archuleta E, Farmer A, Gajendran K, Grant D, Shoemaker R, Beavis WD, Waugh ME (2005) The legume information system (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res 33(1):D660–D665

    CAS  PubMed  Google Scholar 

  • Grassl CO (1974) The origin of sugarcane. Sugarcane Breed Newsl 34:1018

    Google Scholar 

  • Grassl CO (1977) The origin of the sugarcane producing cultivar of Saccharum. Sugarcane Breed Newsl 39:8–33

    Google Scholar 

  • Grativol C, Regulski M, Bertalan M, McCombie WR, Silva FR, Zerlotini Neto A, Vicentini R, Farinelli L, Hemerly AS, Martienssen RA, Ferreira PCG (2014) Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. Plant J 79(1):162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Raghuvanshi S, Gupta A, Saini N, Gaur A, Khan MS, Gupta RS, Singh J, Duttamajumder SK, Srivastava S, Suman A (2010) The water-deficit stress-and red-rot-related genes in sugarcane. Funct Integr Genomics 10(2):207–214

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Moore P, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploidy Saccharum spontaneum by multifluorescence in situ hybridization and imagine methods. Plant Mol Biol 39(6):1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Hassuani SJ, Da Silva JEAR, Neves JLM (2005) Sugarcane trash recovery alternatives for power generation. Proc Int Soc Sug Cane Technol 25:394–402

    Google Scholar 

  • Heller-Uszynska K, Uszynski G, Huttner E, Evers M, Carlig J, Caig V, Aitken K, Jackson P, Piperidis G, Cox M, Gilmour R (2011) Diversity arrays technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breed 28(1):37–55

    Article  CAS  Google Scholar 

  • Hemaprabha G (1998) Genetic relationship among Saccharum species clones through RAPD analysis. In: First national plant breeding congress, Coimbatore, India, p 78

    Google Scholar 

  • Hemaprabha G, Lavanya DL (2015) Sucrose specific TRAP markers as genus and species specific markers in Saccharum and Erianthus spp. Indian J Genet Plant Breed 75(1):99–104

    Article  CAS  Google Scholar 

  • Hemaprabha G, Govindaraj P, Singh NK (2006) STMS markers for fingerprinting of varieties and genotypes sugarcane (Saccharum spp). Indian J Genet Plant Breed 66(2):95–99

    CAS  Google Scholar 

  • Henry RJ, Kole C (2010) Genetics, genomics and breeding of sugarcane. CRC Press, Boca Raton

    Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) II detection of QTLs for yield components. Theor Appl Gen 105(6–7):1027–1037

    Google Scholar 

  • Hofsetz K, Silva MA (2012) Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenergy 46:564–573

    Article  Google Scholar 

  • Hossain MM, Abdulla F (2015) Forecasting the sugarcane production in Bangladesh by ARIMA model. J Stat Appl Probab 4(2):297–303

    Google Scholar 

  • Hotta CT, Lembke CG, Domingues DS, Ochoa EA, Cruz GM, Melotto-Passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GR, Crivellari AC (2010) The biotechnology roadmap for sugarcane improvement. Trop Plant Biol 3(2):75–87

    Article  CAS  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 21(3):289–294

    Article  CAS  Google Scholar 

  • Huang Y, Wu J, Wang P, Lin Y, Fu C, Deng Z, Wang Q, Li Q, Chen R, Zhang M (2015) Characterization of chromosome inheritance of the intergeneric BC 2 and BC 3 progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One 10(7):0133722

    Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crop Res 92(2–3):277–290

    Article  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (genome database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36(1):D1034–D1040

    CAS  PubMed  Google Scholar 

  • Kumar SS, Govindaraj P, Appunu C (2014) Morphological and molecular characterization of high biomass IGH, ISH and Saccharum hybrids. Sugar Tech 17(3):243–251

    Article  CAS  Google Scholar 

  • Kumar U, Kumar S (2016) Genetic improvement of sugarcane through conventional and molecular approaches. In: Molecular breeding for sustainable crop improvement. Springer, Cham, pp 325–342

    Chapter  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CL, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41(4):345–363

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Gen 103(2–3):455–461

    Article  CAS  Google Scholar 

  • Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, Ravenscroft D (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36(1):D947–D953

    CAS  PubMed  Google Scholar 

  • Lu YH, D’Hont A, Walker DIT, Rao PS, Feldmann P, Glaszmann JC (1994) Relationships among ancestral species of sugarcane revealed with RFLP using single-copy maize nuclear probes. Euphytica 78(1):7–18

    Google Scholar 

  • Ma HM, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore P, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Gen 108(5):851–863

    Article  Google Scholar 

  • McIntyre CL, Whan VA, Croft B, Magarey R, Smith GR (2005) Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map-and association-based approaches. Mol Breed 16(2):151–161

    Article  CAS  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002a) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45(5):794–803

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Gen 105(2–3):332–345

    CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11(12):2075–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirajkar SJ, Rai AN, Vaidya ER, Moharil MP, Dudhare MS, Suprasanna P (2017) TRAP and SRAP molecular marker based profiling of radiation induced mutants of sugarcane (Saccharum officinarum L.) Plant Gene 9:64–70

    Article  CAS  Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN, Mary S (2006a) Characterization of intergeneric hybrids of Saccharum using molecular markers. Genet Resour Crop Evol 53(1):163–169

    Article  CAS  Google Scholar 

  • Nair NV, Selvi A, Ramraj SS, Pandian KS (2006b) Use of SSR markers for the identification of interspecific and intergeneric hybrids of Saccharum in plant breeding in post genomics era. In: Proceedings of second national plant breeding congress, Coimbatore, India, Indian Society of Plant Breeders 1–3 March, pp 310–318

    Google Scholar 

  • Nair NV, Nair S, Sreenivasan TV, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Resour Crop Evol 46(1):73–79

    Article  Google Scholar 

  • Nam YW, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Gen 98(3–4):638–646

    Article  CAS  Google Scholar 

  • Nishiyama MY Jr, Vicente FFR, Lembke CG, Sato PM, Dal-Bianco ML, Fandino RA, Hotta CT, Souza GM (2010) The SUCEST-FUN regulatory network database: designing an energy grass. Proc Int Soc Sugar Cane Technol 27:1–10

    Google Scholar 

  • Palmer LE, Rabinowicz PD, O'Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302(5653):2115–2117

    Article  PubMed  Google Scholar 

  • Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2010) Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 10(1):251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM, Pinto LR, Souza AP, Van Eeuwijk FA, Garcia AAF (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Gen 124(5):835–849

    Article  CAS  Google Scholar 

  • Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, De Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47(5):795–804

    Article  CAS  PubMed  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genomics 284(1):65–73

    Article  CAS  Google Scholar 

  • Piperidis N, Jackson PA, D’Hont A, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21(2):233–247

    Article  Google Scholar 

  • Prince JP, Loaiza-Figueroa F, Tanksley SD (1992) Restriction fragment length polymorphism and genetic distance among Mexican accessions of capsicum. Genome 35(5):726–732

    Article  CAS  Google Scholar 

  • Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15(4):367–381

    Article  CAS  Google Scholar 

  • Roach BT (1989) Origin and improvement of the genetic base of sugarcane. Proc Australian Soc Sugar Cane Technol 10:34–47

    Google Scholar 

  • Robarts DW, Wolfe AD (2014) Sequence-related amplified polymorphism (SRAP) markers: a potential resource for studies in plant molecular biology. Appl Plant Sci 2(7):1400017

    Article  Google Scholar 

  • Saravanakumar K, Govindaraj P, Appunu C, Senthilkumar S, Kumar R (2014) Analysis of genetic diversity in high biomass producing sugarcane hybrids (Saccharum spp complex) using RAPD and STMS markers. Indian J Biotechnol 13:214–220

    CAS  Google Scholar 

  • Schouten HJ, Van de Weg WE, Carling J, Khan SA, McKay SJ, van Kaauwen MP, Wittenberg AH, Koehorst-van Putten HJ, Noordijk Y, Gao Z, Rees DJG (2012) Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Mol Breed 29(3):645–660

    Article  CAS  PubMed  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2005) Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45(5):1750–1757

    Article  CAS  Google Scholar 

  • Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Resour Crop Evol 53(4):831–842

    Article  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sills GR, Bridges W, Al-Janabi SM, Sobral BW (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S robustum Brandes & Jesw ex Grassl). Mol Breed 1(4):355–363

    Article  CAS  Google Scholar 

  • da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol 28(2):294–298

    Article  Google Scholar 

  • Simpson AJ, Perez JF (1998) ONSA, the São Paulo virtual genomics institute. Nat Biotechnol 16(9):795–796

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Srivastava S, Verma AK, Singh B, Singh R (2014) Importance and progresses of microsatellite markers in sugarcane (Saccharum spp hybrids). Indian J Sugarcane Technol 29(01):1–12

    Google Scholar 

  • Singh S, Singh RP, Bhavani S, Huerta-Espino J, Eugenio LVE (2013) QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. Theor Appl Gen 126(5):1367–1375

    Article  Google Scholar 

  • Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, Henry R, Ming R, Potier B, Van Sluys MA, Vincentz M (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4(3–4):145–156

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Chapter  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A (2008) The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36(1):D1009–D1014

    CAS  PubMed  Google Scholar 

  • Thumjamras S, de Jong H, Iamtham S, Prammanee S (2013) Sugar cane genome numbers assumption by ribosomal DNA FISH techniques. J Med Bioeng 2(4):248–251

    CAS  Google Scholar 

  • Tomkins JP, Peterson DG, Yang TJ, Main D, Wilkins TA, Paterson AH, Wing RA (2001) Development of genomic resources for cotton (Gossypium hirsutum L) BAC library construction, preliminary STC analysis, and identification of clones associated with fiber development. Mol Breed 8(3):255–261

    Article  CAS  Google Scholar 

  • Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99(3–4):419–424

    Article  CAS  PubMed  Google Scholar 

  • Ul Haq S, Jain R, Sharma M, Kachhwaha S, Kothari SL (2014) Identification and characterization of microsatellites in expressed sequence tags and their cross transferability in different plants. Int J Genomics 2014(3):863948

    Google Scholar 

  • Ul Haq S, Kumar P, Singh RK, Verma KS, Bhatt R, Sharma M, Kachhwaha S, Kothari SL (2016) Assessment of functional EST-SSR markers (sugarcane) in cross-species transferability, genetic diversity among poaceae plants and bulk segregation analysis. Genet Res Int 2016:7052323

    PubMed  PubMed Central  Google Scholar 

  • Valdes C (2011) Brazil’s ethanol industry: looking forward. BIO-02 outlook. United States Department of Agriculture, Economic Research. Service http://usda.mannlib.cornell.edu/usda/ers/BioEnergy/2010s/2011/BioEnergy-06-27-2011_Special_Report.pdf

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MIT, Henrique-Silva F, Giglioti ÉA, Lemos MV, Coutinho LL, Nobrega MP (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13(12):2725–2735

    Article  PubMed  PubMed Central  Google Scholar 

  • Vettore AL, Silva FRD, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24(1–4):1–7

    Article  CAS  Google Scholar 

  • Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Gen 97(7):1183–1190

    Article  CAS  Google Scholar 

  • Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian G, Evers M (2008) Diversity Arrays Technology (DArT): a generic high-density genotyping platform in safflower: unexploited potential and world adaptability 7th international safflower conference, Australia, Agri-MC marketing and communication, pp 1–7

    Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22(23):4922–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Parco A, Nandi S, Subudhi P, Zhu Y, Wang G, Huang N (1997) Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor Appl Gen 95(7):1147–1154

    Article  CAS  Google Scholar 

  • Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149(1):171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Gen 101(7):1093–1099

    Article  CAS  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74(3):279–289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Appunu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Narayan, J.A., Manoj, V.M., Kaur, L., Appunu, C. (2017). Unraveling the Sugarcane Genome: Progress Made So Far and Challenges Ahead. In: Mohan, C. (eds) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-58946-6_3

Download citation

Publish with us

Policies and ethics