Advertisement

Evaluation of Parallel Differential Evolution Implementations on MapReduce and Spark

  • Diego Teijeiro
  • Xoán C. Pardo
  • David R. Penas
  • Patricia GonzálezEmail author
  • Julio R. Banga
  • Ramón Doallo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10104)

Abstract

Global optimization problems arise in many areas of science and engineering, computational and systems biology and bioinformatics among them. Many research efforts have focused on developing parallel metaheuristics to solve them in reasonable computation times. Recently, new programming models are being proposed to deal with large scale computations on commodity clusters and Cloud resources. In this paper we investigate how parallel metaheuristics deal with these new models by the parallelization of the popular Differential Evolution algorithm using MapReduce and Spark. The performance evaluation has been carried out both in a local cluster and in the Amazon Web Services public cloud. The results obtained can be particularly useful for those interested in the potential of new Cloud programming models for parallel metaheuristic methods in general and Differential Evolution in particular.

Keywords

Parallel metaheuristics Differential Evolution Cloud computing MapReduce Spark 

Notes

Acknowledgements

Financial support from the Spanish Government (and the FEDER) through the projects DPI2014-55276-C5-2-R, TIN2013-42148-P, and from the Galician Government under the Consolidation Program of Competitive Research Units (Network Ref. R2014/041 and Project Ref. GRC2013/055) cofunded by FEDER funds of the EU.

References

  1. 1.
    Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In: PPSN-EMAA 2006, pp. 9–14. Reykjavik, Iceland, September 2006Google Scholar
  2. 2.
    Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Daoudi, M., Hamena, S., Benmounah, Z., Batouche, M.: Parallel differential evolution clustering algorithm based on MapReduce. In: 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 337–341. IEEE (2014)Google Scholar
  4. 4.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  5. 5.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: The 6th USENIX Symposium on Operating Systems Design and Implementation (2004)Google Scholar
  6. 6.
    Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.: Twister: a runtime for iterative MapReduce. In: The First International Workshop on MapReduce and its Applications (2010)Google Scholar
  7. 7.
    Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2009: experimental setup. Technical report, RR-6828, INRIA (2009)Google Scholar
  8. 8.
    Jakovits, P., Srirama, S.N.: Evaluating MapReduce frameworks for iterative scientific computing applications. In: International Conference on High Performance Computing & Simulation, HPCS 2014. IEEE (2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6903690
  9. 9.
    Locke, J., Millar, A., Turner, M.: Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J. Theor. Biol. 234(3), 383–393 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Penas, D.R., Banga, J.R., González, P., Doallo, R.: Enhanced parallel differential evolution algorithm for problems in computational systems biology. Appl. Soft Comput. 33, 86–99 (2015). http://www.sciencedirect.com/science/article/pii/S1568494615002525 CrossRefGoogle Scholar
  11. 11.
    Shi, J., Qiu, Y., Minhas, U.F., Jiao, L., Wang, C., Reinwald, B., Özcan, F.: Clash of the titans: MapReduce vs. spark for large scale data analytics. In: Proceedings of the Very Large Data Bases (VLDB) Endowment, vol. 8, pp. 2110–2121 (2015)Google Scholar
  12. 12.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tagawa, K., Ishimizu, T.: Concurrent differential evolution based on MapReduce. Int. J. Comput. 4(4), 161–168 (2010)Google Scholar
  14. 14.
    Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Implementing parallel differential evolution on spark. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 75–90. Springer, Cham (2016). doi: 10.1007/978-3-319-31153-1_6 CrossRefGoogle Scholar
  15. 15.
    Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: The 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012 (2012)Google Scholar
  16. 16.
    Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1113–1114. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Diego Teijeiro
    • 1
  • Xoán C. Pardo
    • 1
  • David R. Penas
    • 2
  • Patricia González
    • 1
    Email author
  • Julio R. Banga
    • 2
  • Ramón Doallo
    • 1
  1. 1.Grupo de Arquitectura de ComputadoresUniversidade da CoruñaA CoruñaSpain
  2. 2.BioProcess Engineering GroupIIM-CSICVigoSpain

Personalised recommendations