Skip to main content

Crystal Image Region Segmentation

  • Chapter
  • First Online:

Part of the book series: Computational Biology ((COBO,volume 25))

Abstract

In general, a single thresholding technique is developed or enhanced to separate foreground objects from the background for a domain of images. This idea may not generate satisfactory results for all images in a dataset, since different images may require different types of thresholding methods for proper binarization or segmentation. To overcome this problem, this chapter explains “super-thresholding” method that utilizes a supervised classifier to decide an appropriate thresholding method for a specific image. This method provides a generic framework that allows selection of the best thresholding method among different thresholding techniques that are beneficial for the problem domain. A classifier model is built using features extracted priori from the original image only or posteriori by analyzing the outputs of thresholding methods and the original image. This model is applied to identify the thresholding method for new images of the domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://code.google.com/p/randomforest-matlab/.

References

  1. Chang, S.G., Yu, B., & Vetterli, M. (2000). Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing, 9(9), 1522–1531.

    Google Scholar 

  2. Chowdhury, G. (2010). Introduction to modern information retrieval. Facet publishing.

    Google Scholar 

  3. Chuang, M.-C., Hwang, J.-N., Williams, K., and Towler, R. (2011). Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems. In Image Processing (ICIP), 18th IEEE International Conference on 2011 (pp. 3145–3148).

    Google Scholar 

  4. Cumbaa, C.A., & Jurisica, I. (2010). Protein crystallization analysis on the world community grid. Journal of Structural Function Genomics, 11(1), 61–9.

    Google Scholar 

  5. de Albuquerque, M. P., Esquef, I., Mello, A. G., & de Albuquerque, M. P. (2004). Image thresholding using tsallis entropy. Pattern Recognition Letters, 25(9), 1059–1065.

    Article  Google Scholar 

  6. Dinc, I., Dinc, S., Sigdel, M., Sigdel, M., Pusey, M.L., & Aygun, R.S.(2017). Super-thresholding: Supervised thresholding of protein crystal images. IEEE/ACM Transactions on Computational Biology and Bioinformatics PP, 99, 1–1.

    Google Scholar 

  7. Dinç, I., Dinç, S., Sigdel, M., Sigdel, M.S., Pusey, M.L., & Aygün, R. S.(2014). Dt-binarize: A hybrid binarization method using decision tree for protein crystallization images. In Proceedings of The 2014 International Conference on Image Processing, Computer Vision & Pattern Recognition, IPCV’14, pp. 304–311.

    Google Scholar 

  8. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  9. Harris, C., & Stephens, M.(1988). A combined corner and edge detector. In Alvey vision conference, Vol. 15, Citeseer, p. 50.

    Google Scholar 

  10. Howe, N.(2011) A laplacian energy for document binarization. In Document Analysis and Recognition (ICDAR), International Conference on 2011 pp. 6–10.

    Google Scholar 

  11. Howe, N. R. (2013). Document binarization with automatic parameter tuning. International Journal on Document Analysis and Recognition (IJDAR), 16(3), 247–258.

    Article  Google Scholar 

  12. Johannsen, G., & Bille, J. (1982). A threshold selection method using information measures. In ICPR, 82, 140–143.

    Google Scholar 

  13. Kapur, J., Sahoo, P., & Wong, A. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29(3), 273–285.

    Article  Google Scholar 

  14. Lempitsky, V., Vedaldi, A., and Zisserman, A.(2011). Pylon model for semantic segmentation. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira & K. Weinberger (Eds.), Advances in Neural Information Processing Systems 24, Curran Associates, Inc., pp. 1485–1493.

    Google Scholar 

  15. Matthews, B.W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2), 442–451.

    Google Scholar 

  16. McPherson, A., & Gavira, J. A. (2014). Introduction to protein crystallization. Acta Crystallographica Section F: Structural Biology Communications, 70(1), 2–20.

    Article  Google Scholar 

  17. Niblack, W. (1985). An introduction to digital image processing. Strandberg Publishing Company.

    Google Scholar 

  18. Oh, W., & Lindquist, W. (1999). Image thresholding by indicator kriging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(7), 590–602.

    Article  Google Scholar 

  19. Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285–296), 23–27.

    Google Scholar 

  20. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238.

    Article  Google Scholar 

  21. Ray, N., & Saha, B.(2007). Edge sensitive variational image thresholding. In IEEE International Conference on Image Processing, ICIP 2007 (Sept 2007), Vol. 6, pp. VI – 37–VI – 40.

    Google Scholar 

  22. Sasaki, Y.(2007). The truth of the f-measure. Teach Tutor mater, pp. 1–5.

    Google Scholar 

  23. Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern recognition, 33(2), 225–236.

    Article  Google Scholar 

  24. Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), 146–168.

    Article  Google Scholar 

  25. Shaikh, S., Maiti, A., & Chaki, N.(2011). Image binarization using iterative partitioning: A global thresholding approach. In Recent Trends in Information Systems (ReTIS), International Conference on, pp. 281–286.

    Google Scholar 

  26. Shaikh, S. H., Maiti, A. K., & Chaki, N. (2013). A new image binarization method using iterative partitioning. Machine vision and applications, 24(2), 337–350.

    Article  Google Scholar 

  27. Sigdel, M., Pusey, M. L., & Aygun, R. S. (2013). Real-time protein crystallization image acquisition and classification system. Crystal Growth and Design, 13(7), 2728–2736.

    Article  Google Scholar 

  28. Sigdel, M., Sigdel, M., Dinc, S., Dinc, I., Pusey, M., & Aygun, R. (2015). Focusall: Focal stacking of microscopic images using modified harris corner response measure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 99, 1–1.

    Google Scholar 

  29. Sigdel, M., Sigdel, M.S., Dinç, İ., Dinç, S., Aygün, R.S., & Pusey, M.L.(2015) Chapter 27 - automatic classification of protein crystal images. In In Emerging Trends in Image Processing, Computer Vision and Pattern Recognition. Morgan Kaufmann, pp. 421–432.

    Google Scholar 

  30. Silva, A.(2011). Region-based thresholding using component tree. In 18th IEEE International Conference on Image Processing (ICIP), pp. 1445–1448.

    Google Scholar 

  31. Starks, J. L., & Fehl, A. (2012). Adobe Photoshop CS6: Comprehensive (1st ed.). Boston, MA, United States: Course Technology Press.

    Google Scholar 

  32. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co.

    Google Scholar 

  33. Zhang, J., & Hu, J. (2008). Image segmentation based on 2d otsu method with histogram analysis. In 2008 International Conference on Computer Science and Software Engineering, Vol. 6, pp. 105–108.

    Google Scholar 

Download references

Acknowledgements

\(\copyright \)2017 IEEE. Reprinted with Permission, from I. Dinç, S. Dinç, M. Sigdel, M. S. Sigdel, M. L. Pusey; R. S. Aygün, “Super-thresholding: Supervised Thresholding of Protein Crystal Images,” in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 14, no. 4, pp. 986–998, July–Aug. 1 2017. doi: https://doi.org/10.1109/TCBB.2016.2542811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc L. Pusey .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pusey, M.L., Aygün, R.S. (2017). Crystal Image Region Segmentation. In: Data Analytics for Protein Crystallization. Computational Biology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58937-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58937-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58936-7

  • Online ISBN: 978-3-319-58937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics