Skip to main content

Logarithmic Sobolev Inequalities for an Ideal Bose Gas

  • Chapter
  • First Online:
Advances in Quantum Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 18))

  • 1049 Accesses

Abstract

The aim of this work is to derive logarithmic Sobolev inequalities, with respect to the Fock vacuum state and for the second quantized Hamiltonian \(d\varGamma (H^{\varLambda } -\mu \mathbb{I})\) of an ideal Bose gas with Dirichlet boundary conditions in a finite volume Λ, from the free energy variation with respect to a Gibbs temperature state and from the monotonicity of the relative entropy. Hypercontractivity of the semigroup \(e^{-\beta d\varGamma (H^{\varLambda }) }\) is also deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Araki, S. Yamagami, On quasi-equivalence of quasifree states of canonical commutation relations. Publ. RIMS Kyoto Univ. 18, 283–338 (1982)

    MathSciNet  MATH  Google Scholar 

  2. O. Bratteli, D.W. Robinson, “Operator algebras and Quantum Statistical Mechanics 2”, 2nd edn. (Springer, Berlin, Heidelberg, New York, 1996), 517 p.

    Google Scholar 

  3. E. Carlen, D. Stroock, An Application of the Bakry-Emery Criterion to Infinite-Dimensional Diffusions. Séminaire de Probabilités, XX, 1984/85, Lecture Notes in Math., vol. 1204 (Springer, Berlin, 1986), pp. 341–348

    Google Scholar 

  4. E.B. Davies, Heat Kernels and Spectral Theory, vol. 92 (Cambridge Tracts in Mathematics, Cambridge, 1989)

    Book  MATH  Google Scholar 

  5. E.B. Davies, B. Simon, Ultracontractivity and the heat kernel for Schroedinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Gross, Existence and uniqueness of physical ground states. J. Funct. Anal. 10, 59–109 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford–Dirichlet form. Duke Math. J. 42, 383–396 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Lieb, The stability of matter. Rev. Modern Phys. 48(4), 553–569 (1976)

    Article  MathSciNet  Google Scholar 

  9. E. Nelson, A quartic interaction in two dimension, Mathematical theory of elementary particles (Proceedings of the Conference on the mathematical Theory of Elementary particles held at Hendicott House in Dedham, Mass., September 12–15, 1965), Roe Goodman and Irving E. Segal eds. (1966), 69–73

    Google Scholar 

  10. E. Nelson, The free Markov field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  Google Scholar 

  11. I.E. Segal, Tensor algebras over Hilbert spaces I. Trans. Am. Math. Soc. 81, 106–134 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. I.E. Segal, Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc. 88, 12–41 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Simon, “The P(Φ) 2 Euclidean (Quantum) Field Theory” (Princeton University Press, Princeton, New Jersey, 1974)

    Google Scholar 

  14. B. Simon, R. Hoegh-Krohn, Hypercontractivity semigroups and two dimensional self-coupled Bose fields. J. Funct. Anal. 9, 121–180 (1972)

    Article  MATH  Google Scholar 

  15. D. Stroock, B. Zegarlinski, The equivalence of Logarithmic Sobolev Inequality and the Dobrushin-Shlosmann mixing condition. Comm. Math. Phys. 144, 303–323 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Umegaki, Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Sem. Rep. 14, 59–85 (1962)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by GREFI-GENCO INDAM Italy-CNRS France and MIUR PRIN 2012 Project No 2012TC7588-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cipriani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cipriani, F. (2017). Logarithmic Sobolev Inequalities for an Ideal Bose Gas. In: Michelangeli, A., Dell'Antonio, G. (eds) Advances in Quantum Mechanics. Springer INdAM Series, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-58904-6_7

Download citation

Publish with us

Policies and ethics