Advertisement

Analysis of Fluctuations Around Non-linear Effective Dynamics

  • Serena CenatiempoEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 18)

Abstract

We consider the derivation of effective equations approximating the many-body quantum dynamics of a large system of N bosons in three dimensions, interacting through a two-body potential N3β−1V (N β x). For any 0 ≤ β ≤ 1 well known results establish the trace norm convergence of the k-particle reduced density matrices associated with the solution of the many-body Schrödinger equation towards products of solutions of a one-particle non linear Schrödinger equation, as N. In collaboration with C. Boccato and B. Schlein we studied fluctuations around the approximate non linear Schrödinger dynamics, obtaining for all 0 < β < 1 a norm approximation of the evolution of an appropriate class of data on the Fock space.

Keywords

Gross-Pitaevskii equation Interacting bosons Nonlinear Schrödinger equations Quantum dynamics Quantum fluctuations 

References

  1. 1.
    M.H. Anderson et al., Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 5221 (1995); C.C. Bradley et al., Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75 (1995); K.B. Davis et al., Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, (1995)Google Scholar
  2. 2.
    C. Bardos, F. Golse, N.J. Mauser, Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 2, 275–293 (2000)zbMATHGoogle Scholar
  3. 3.
    G. Ben Arous, K. Kirkpatrick, B. Schlein, A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321, 371–417 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N. Benedikter, G. de Oliveira, B. Schlein: Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Benedikter, M. Porta, B. Schlein, Effective Evolution Equations from Quantum Dynamics. Springer, Berlin (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    C. Boccato, C. Brennecke S. Cenatiempo, B. Schlein, The excitation spectrum of Bose gases interacting through singular potentials (2017). Preprint, arXiv:1704.04819Google Scholar
  7. 7.
    C. Boccato, S. Cenatiempo, B. Schlein, Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Henri Poincaré 18(1), 113–191 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Buchholz, C. Saffirio, B. Schlein, Multivariate central limit theorem in quantum dynamics. J. Stat. Phys. 154, 113–152 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    X. Chen, Second order corrections to mean-field evolution for weakly interacting bosons in the case of three-body interactions. Arch. Ration. Mech. Anal. 203, 455–497 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Derezinski, M. Napiórkowski, Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15(12), 2409–2439 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. Erdős, H.-T. Yau, Derivation of the nonlinear Schrödinger equation from a many-body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. Erdős, B. Schlein, H.T. Yau, Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math. 59(12) 1659–1741 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    L. Erdős, B. Schlein, H.-T. Yau, Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math. 167, 515–614 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    L. Erdős, B. Schlein, H.-T. Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Erdős, B. Schlein, H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)Google Scholar
  16. 16.
    J. Ginibre, G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I and II. Commun. Math. Phys. 66(1), 37–76 (1979) and 68(1), 45–68 (1979)Google Scholar
  17. 17.
    P. Grech, R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Grillakis, M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I. Commun. Math. Phys. 324, 601–636 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Grillakis, M. Machedon, Pair excitations and the mean field approximation of interacting bosons, II. Preprint. arXiv:1509.05911 (2015)Google Scholar
  20. 20.
    M. Grillakis, M. Machedon, D. Margetis, Second-order corrections to mean-field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Grillakis, M. Machedon, D. Margetis, Second-order corrections to mean-field evolution of weakly interacting bosons. II. Adv. Math. 228(3), 1788–1815 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    K. Hepp, The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Knowles, P. Pickl, Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Lewin, Geometric methods for nonlinear many-body quantum systems J. Funct. Anal. 260(12), 3535–3595 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Lewin, P.T. Nam, S. Serfaty, J.P. Solovej, Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. Lewin, P.T. Nam, B. Schlein, Fluctuations around Hartree states in the mean-field regime. Am. J. Math. 137(6), 1613–1650 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D. Mitrouskas, S. Petrat, P. Pickl, Bogoliubov corrections and trace norm convergence for the Hartree dynamics. Preprint. arXiv: 1609.06264 (2016)Google Scholar
  28. 28.
    P.T. Nam, M. Napiórkowski, Bogoliubov correction to the mean-field dynamics of interacting bosons (2015). Preprint, arXiv:1509.04631Google Scholar
  29. 29.
    P.T. Nam, M. Napiórkowski, A note on the validity of Bogoliubov correction to mean-field dynamics. J. Math. Pures Appl. (2017). Online firstGoogle Scholar
  30. 30.
    P. Pickl, Derivation of the time dependent Gross Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)Google Scholar
  31. 31.
    A. Pizzo, Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian. Preprint. arXiv:1511.07022 (2015)Google Scholar
  32. 32.
    A. Pizzo, Bose particles in a box II. A convergent expansion of the ground state of the Bogoliubov Hamiltonian in the mean field limiting regime. Preprint. arXiv:1511.07025 (2015)Google Scholar
  33. 33.
    A. Pizzo, Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. Preprint. arXiv:1511.07026 (2015)Google Scholar
  34. 34.
    I. Rodnianski, B. Schlein, Quantum fluctuations and rate of convergence towards mean-field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    R. Seiringer, The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations