Advertisement

Correlation Inequalities for Classical and Quantum XY Models

  • Costanza Benassi
  • Benjamin Lees
  • Daniel Ueltschi
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 18)

Abstract

We review correlation inequalities of truncated functions for the classical and quantum XY models. A consequence is that the critical temperature of the XY model is necessarily smaller than that of the Ising model, in both the classical and quantum cases. We also discuss an explicit lower bound on the critical temperature of the quantum XY model.

Keywords

Classical XY model Correlation inequalities Lattice systems Quantum XY model Spin systems 

Notes

Acknowledgements

The authors thank S. Bachmann and C.E. Pfister for useful comments.

References

  1. 1.
    H. Kunz, C.E. Pfister, P.A. Vuillermot, Correlation inequalities for some classical spin vector models. Phys. Lett. 54A, 428–430 (1975)CrossRefGoogle Scholar
  2. 2.
    F. Dunlop, Correlation inequalities for multicomponent rotors. Commun. Math. Phys. 49, 247–256 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.L. Monroe, Correlation inequalities for two-dimensional vector spin systems. J. Math. Phys. 16, 1809–1812 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.L. Monroe, P.A. Pearce, Correlation inequalities for vector spin Models. J. Stat. Phys. 21, 615 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Kunz, C.E. Pfister, P.A. Vuillermot, Inequalities for some classical spin vector models. J. Phys. A Math. Gen. 9(10), 1673–1683 (1976)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Messager, S. Miracle-Sole, C. Pfister, Correlation inequalities and uniqueness of the equilbrium state for the plane rotator ferromagnetic model. Commun. Math. Phys. 58, 19–29 (1978)CrossRefGoogle Scholar
  7. 7.
    J. Fröhlich, C.E. Pfister, Spin waves, vortices, and the structure of equilibrium states in classical XY model. Commun. Math. Phys. 89, 303–327 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Gallavotti, A proof of the Griffiths inequalities for the X-Y model. Stud. Appl. Math. 50, 89–92 (1971)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Suzuki, Correlation inequalities and phase transition in the generalised X-Y model. J. Math. Phys. 14, 837–838 (1973)CrossRefGoogle Scholar
  10. 10.
    P.A. Pearce, J.L. Monoroe, A simple proof of spin-\(\frac{1} {2}\) X-Y inequalities. J. Phys. A Math. Gen. 12(7), L175 (1979)Google Scholar
  11. 11.
    C. Benassi, B. Lees, D. Ueltschi, Correlation inequalities for the quantum XY model. J. Stat. Phys. 164, 1157–1166 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R.B. Griffiths, Correlations in Ising ferromagnets. I. J. Math. Phys. 8, 478–483 (1967)CrossRefGoogle Scholar
  13. 13.
    J. Ginibre, General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310–328 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.A. Hurst, S. Sherman, Griffiths’ theorems for the ferromagnetic Heisenberg model. Phys. Rev. Lett. 22, 1357 (1969)CrossRefGoogle Scholar
  15. 15.
    A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Bachmann, Local disorder, topological ground state degeneracy and entanglement entropy, and discrete anyons. arXiv:1608.03903 (2016)Google Scholar
  17. 17.
    S. Wenzel, W. Janke, Finite-temperature Néel ordering of fluctuations in a plaquette orbital model. Phys. Rev. B 80, 054403 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Biskup, R. Kotecký, True nature of long-range order in a plaquette orbital model. J. Statist. Mech. 2010, P11001 (2010)CrossRefGoogle Scholar
  19. 19.
    P.A. Pearce, An inequality for spin-s X-Y ferromagnets. Phys. Lett. A 70(2), 117–118 (1979)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T. Preis, P. Virnau, W. Paul, J.J. Schneider, GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model. J. Comput. Phys. 228(12), 4468–4477 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    M. Hasenbusch, S. Meyer, Critical exponents of the 3D XY model from cluster update Monte Carlo. Phys. Lett. B 241(2), 238–242 (1990)CrossRefGoogle Scholar
  22. 22.
    J. Fröhlich, B. Simon, T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    F.J. Dyson, E.H. Lieb, B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J.O. Vigfusson, Upper bound on the critical temperature in the 3D Ising model. J. Phys. A Math. Gen. 18(17), 3417 (1985)Google Scholar
  25. 25.
    D. Ueltschi, Random loop representations for quantum spin systems. J. Math. Phys. 54(8), 083301 (2013)Google Scholar
  26. 26.
    S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. http://www.unige.ch/math/folks/velenik/smbook/index.html
  27. 27.
    C.M. Fortuin, P.W. Kasteleyn, J. Ginibre, Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C.J. Preston, A generalization of the FKG inequalities. Comm. Math. Phys. 36, 233–241 (1974)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Costanza Benassi
    • 1
  • Benjamin Lees
    • 2
  • Daniel Ueltschi
    • 1
  1. 1.Department of MathematicsUniversity of WarwickCoventryUK
  2. 2.Department of MathematicsUniversity of GothenburgGothenburgSweden

Personalised recommendations