Advertisement

Convergent Cross Mapping: Theory and an Example

  • Anastasios A. Tsonis
  • Ethan R. Deyle
  • Hao Ye
  • George Sugihara
Chapter

Abstract

In this review paper we present the basic principles behind convergent cross mapping, a new causality detection method, as well as an example to demonstrate it.

Keywords

Causality Nonlinearity Dynamical systems 

References

  1. Bond, G., et al. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294: 2130–2136. doi: 10.1126/science.1065680.CrossRefGoogle Scholar
  2. Cliver, E., V. Boriakoff, and J. Feynman. 1998. Solar variability and climate change: geomagnetic AA index and global surface temperature. Geophysical Research Letters 25 (7): 1035–1038.CrossRefGoogle Scholar
  3. Duplissy, J., et al. 2010. Results from the CERN pilot CLOUD experiment. Atmospheric Chemistry and Physics 10: 1635–1647.CrossRefGoogle Scholar
  4. Ebisuzaki, W. 1997. A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate 10: 2147–2158.CrossRefGoogle Scholar
  5. Enghoff, M.B., J.O.P. Pedersen, U.I. Uggerhoj, S.M. Paling, and H. Svensmark. 2011. Aerosol nucleation induced by high energy particle beam. Geophysical Research Letters 38: L09805. doi: 10.1029/2011GL047036.CrossRefGoogle Scholar
  6. Foukal, P., C. Frohlich, H. Spruit, and T.M.L. Wigley. 2006. Variations in solar luminosity and their effect on the earth’s climate. Nature 443: 161–166. doi: 10.1038/nature05072.CrossRefGoogle Scholar
  7. Granger, C.W.J. 1969. Investigating causal relations by econometric models and cross-spectral analysis. Econometrica 37: 424–438.CrossRefGoogle Scholar
  8. Harrison, R.G., M.H.P. Ambaum, and M. Lockwood. 2011. Cloud bases height and cosmic rays. Proceeding of the Royal Society of London 467: 2777–2791. doi: 10.1098/rspa.2011.0040.CrossRefGoogle Scholar
  9. Kikby, J., et al. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476: 429–433. doi: 10.1038/nature10343.CrossRefGoogle Scholar
  10. Marsh, N., and H. Svensmark. 2000. Low cloud properties influenced by cosmic rays. Physical Review Letters 85: 5004–5007.CrossRefGoogle Scholar
  11. Nayaud, P.N. 1972. The aa indices: A 100-year series characterizing magnetic activity. Journal of Geophysical Research 17: 6870–6874.Google Scholar
  12. Neff, U., S.J. Burns, A. Mangini, M. Madelsee, D. Fleitmann, and A. Matter. 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411: 290–293. doi: 10.1038/35077048. CrossRefGoogle Scholar
  13. Perry, C.A. 2007. Evidence for a physical linkage between galactic cosmic rays and regional climate time series. Journal of Advances in Space Research 40 (3): 353–364. doi: 10.1016/j.asr.2007.02.079.CrossRefGoogle Scholar
  14. Rawal, A., S.N. Tripathi, M. Michael, A.K. Srivastava, and R.G. Harrison. 2013. Quantifying the importance of galactic cos mic rays in cloud microphysical processes. Journal of Atmospheric and Solar - Terrestrial Physics 102: 243–251.CrossRefGoogle Scholar
  15. Sauer, T., J. Yorke, and M. Casdagli. 1991. Embedology. Journal of Statistical Physics 65: 579–616.CrossRefGoogle Scholar
  16. Shaviv, N. 2003. The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8: 39–77.CrossRefGoogle Scholar
  17. Stark, J., D.S. Broomhead, M.E. Davies, and J. Huke. 2003. Delay embeddings for forced systems. II. Stochastic forcing. Journal of Nonlinear Science 13: 519–577.CrossRefGoogle Scholar
  18. Stuive, M., and P.D. Quay. 1980. Changes in the carbon-14 attributed to a variable Sun. Science 207: 11–19.CrossRefGoogle Scholar
  19. Sugihara, G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions of the Royal Society A 348: 477–495.CrossRefGoogle Scholar
  20. Sugihara, G., and R.M. May. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 733–741.CrossRefGoogle Scholar
  21. Sugihara, G., et al. 2012. Detecting causality in complex ecosystems. Science 338: 496–500.CrossRefGoogle Scholar
  22. Svensmark, H. 1998. Influence of cosmic rays on Earth’s climate. Physical Review Letters 81: 5027–5030.CrossRefGoogle Scholar
  23. Svensmark, H., J.O.P. Pedersen, N.D. Marsh, M.B. Enghoff, and U.I. Uggerhoj. 2007. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proceedings of the Royal Society 463 (2078): 385–396.CrossRefGoogle Scholar
  24. Svesmark, H., M.B. Enghoff, and J.O.P. Pedersen. 2013. Response of cloud condensation nuvlei (>50 nm) to changes in ion-nucleation. Physics Letters A 377: 2343–2347.CrossRefGoogle Scholar
  25. Takens, F. 1981. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Lecture notes in mathematics, ed. D.A. Rand and L.-S. Young, vol. 898, 366–381. New York: Springer-Verlag.Google Scholar
  26. Usoskin, I.G., N. Marsh, G.A. Kovaltsov, K. Mursula, and O.G. Gladysheva. 2004. Latitudinal dependence of low cloud amount on cosmic ray induced ionization. Geophysical Research Letters 31: L16109.CrossRefGoogle Scholar
  27. Yu, F. 2005. Quasi-unary homogeneous nucleation of H2SO4-H20. The Journal of Chemical Physics 122: 074501.CrossRefGoogle Scholar
  28. Zhang, R., A. Khalizov, L. Wang, M. Hu, and W. Xu. 2012. Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews 112: 1957–2011.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anastasios A. Tsonis
    • 1
    • 2
  • Ethan R. Deyle
    • 3
  • Hao Ye
    • 3
  • George Sugihara
    • 3
  1. 1.Department of Mathematical Sciences, Atmospheric Sciences GroupUniversity of Wisconsin - MilwaukeeMilwaukeeUSA
  2. 2.Hydrologic Research CenterSan DiegoUSA
  3. 3.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations