Skip to main content

From Fractals to Stochastics: Seeking Theoretical Consistency in Analysis of Geophysical Data

  • Chapter
  • First Online:
Advances in Nonlinear Geosciences

Abstract

Fractal-based techniques have opened new avenues in the analysis of geophysical data. On the other hand, there is often a lack of appreciation of both the statistical uncertainty in the results and the theoretical properties of the stochastic concepts associated with these techniques. Several examples are presented which illustrate suspect results of fractal techniques. It is proposed that concepts used in fractal analyses are stochastic concepts and the fractal techniques can readily be incorporated into the theory of stochastic processes. This would be beneficial in studying biases and uncertainties of results in a theoretically consistent framework, and in avoiding unfounded conclusions. In this respect, a general methodology for theoretically justified stochastic processes, which evolve in continuous time and stem from maximum entropy production considerations, is proposed. Some important modelling issues are discussed with focus on model identification and fitting often made using inappropriate methods. The theoretical framework is applied to several processes, including turbulent velocities measured every several microseconds, and wind and temperature measurements. The applications show that several peculiar behaviours observed in these processes are easily explained and reproduced by stochastic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aksoy, H.Z., T. Fuad, A. Aytek, and N. Erdem. 2004. Stochastic generation of hourly mean wind speed data. Renewable Energy 29: 2111–2131.

    Article  Google Scholar 

  • Arnold, B.C. 1983. Pareto distributions. Fairland, MD: International Co-operative Publishing House.

    Google Scholar 

  • Bartlett, M.S. 1948. Smoothing periodograms from time series with continuous spectra. Nature 161 (4096): 686–687. doi:10.1038/161686a0.

    Article  Google Scholar 

  • Batchelor, G.K., and A.A. Townsend. 1949. The nature of turbulent motion at large wave-numbers. Proceedings of the Royal Society of London A 199: 238–255.

    Article  Google Scholar 

  • Beran, J., Y. Feng, S. Ghosh, and R. Kulik. 2013. Long-memory processes: Probabilistic properties and statistical methods. Berlin: Springer.

    Book  Google Scholar 

  • Bottcher, F., S. Barth, and J. Peinke. 2007. Small and large scale fluctuations in atmospheric wind speeds. Stochastic Environmental Research and Risk Assessment 21: 299–308.

    Article  Google Scholar 

  • Burr, I.W. 1942. Cumulative frequency functions. Annals of Mathematical Statistics 13: 215–235.

    Article  Google Scholar 

  • Brouers, F. 2015. The Burr XII distribution family and the maximum entropy principle: Power-law phenomena are not necessarily nonextensive. Open Journal of Statistics 5: 730–741.

    Google Scholar 

  • Castaing, B., Y. Gagne, and E.J. Hopfinger. 1990. Velocity probability density functions of high Reynolds number turbulence. Physica D 46: 177–200.

    Article  Google Scholar 

  • Dechant, A., and E. Lutz. 2015. Wiener-Khinchin theorem for nonstationary scale-invariant processes. Physical Review Letters 115 (8): 080603.

    Article  Google Scholar 

  • Dimitriadis, P., and D. Koutsoyiannis. 2015. Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst−Kolmogorov processes. Stochastic Environmental Research and Risk Assessment 29 (6): 1649–1669. doi:10.1007/s00477-015-1023-7.

    Article  Google Scholar 

  • ———. 2017. Stochastic synthesis approximating any process dependence and distribution. Stochastic Environmental Research and Risk Assessment. (in review).

    Google Scholar 

  • Dimitriadis, P., D. Koutsoyiannis, and P. Papanicolaou. 2016. Stochastic similarities between the microscale of turbulence and hydrometeorological processes. Hydrological Sciences Journal 61 (9): 1623–1640.

    Article  Google Scholar 

  • Doran, C. (2011). Anemometer–Sonic at ABLE Beaumont Site Data. Version 1.0. UCAR/NCAR–Earth Observing Laboratory. http://data.eol.ucar.edu/dataset/45.910. Accessed 07 Jan 2017.

  • Drobinski, P., and C. Coulais. 2012. Is the Weibull distribution really suited for wind statistic modelling and wind power evaluation. Journal of Physics Conference Series 753: 5–8.

    Google Scholar 

  • Falconer, K. 2014. Fractal geometry: Mathematical foundations and applications. 3rd ed. Chichester: Wiley.

    Google Scholar 

  • Feller, W. 1970. An introduction to probability and its applications. Vol. II. 2nd ed. New York, NY: Wiley.

    Google Scholar 

  • Frisch, U. 2006. Turbulence: The legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gneiting, T., and M. Schlather. 2004. Stochastic models that separate fractal dimension and the Hurst effect. Society for Industrial and Applied Mathematics Review 46 (2): 269–282.

    Google Scholar 

  • Graham, L., and J.-M. Kantor. 2009. Naming infinity: A true story of religious mysticism and mathematical creativity. Cambridge: Harvard University Press.

    Google Scholar 

  • Grassberger, P., and I. Procaccia. 1983. Characterization of strange attractors. Physical Review Letters 50 (5): 346–349.

    Article  Google Scholar 

  • Hemelrijk, J. 1966. Underlining random variables. Statistica Neerlandica 20 (1): 1–7.

    Article  Google Scholar 

  • Jaynes, E.T. 1957. Information theory and statistical mechanics. Physics Review 106: 620.

    Article  Google Scholar 

  • Kang, H.S., S. Chester, and C. Meneveau. 2003. Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. Journal of Fluid Mechanics 480: 129–160.

    Article  Google Scholar 

  • Kantelhardt, J.W. 2009. Fractal and multifractal time series. In Encyclopedia of complexity and systems science, ed. R.A. Meyers, vol. LXXX, 3754–3778. Berlin: Springer.

    Chapter  Google Scholar 

  • Kiss, P., and I.M. Janosi. 2008. Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe. Energy Conversion and Management 49 (8): 2142–2151. doi:10.1016/j.enconman.2008.02.003.

    Article  Google Scholar 

  • Kolmogorov, A.N. 1931. Uber die analytischen Methoden in der Wahrscheinlichkcitsrechnung. Mathematische Annalen, English translation: On analytical methods in probability theory, In: Kolmogorov, A.N., 1992. Selected Works of A. N. Kolmogorov−Volume 2, Probability Theory and Mathematical Statistics A. N. Shiryayev, ed., Kluwer, Dordrecht, The Netherlands, pp. 62–108 104: 415–458.

    Google Scholar 

  • ———. (1933). Grundbegrijfe der Wahrscheinlichkeitsrechnung, Ergebnisseder Math. (2), Berlin. (2nd English Edition: Foundations of the theory of probability, 84 pp. Chelsea Publishing Company, New York, 1956).

    Google Scholar 

  • ———. 1938. A simplified proof of the Birkhoff-Khinchin ergodic theorem. Uspekhi Matematicheskikh Nauk 5: 52–56. (English edition: Kolmogorov, A.N., 1991, Selected Works of A. N. Kolmogorov - Volume 1, Mathematics and Mechanics, Tikhomirov, V. M. ed., Kluwer, Dordrecht, The Netherlands, pp. 271−276).

    Google Scholar 

  • ———. 1940. Wiener spirals and some other interesting curves in a Hilbert space. Doklady Akademii Nauk SSSR 26: 115–118. (English translation in: V.M. Tikhomirov, ed., 1991, Selected works of A.N. Kolmogorov, Volume I: Mathematics and mechanics, 324−326. Springer, Berlin).

    Google Scholar 

  • ———. 1941. Dissipation energy in locally isotropic turbulence. Doklady Akademii Nauk SSSR 32: 16–18.

    Google Scholar 

  • Koutsoyiannis, D. 2000. A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. Water Resources Research 36 (6): 1519–1533.

    Article  Google Scholar 

  • Koutsoyiannis, D. 2005. Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling. Hydrological Sciences Journal 50 (3): 381–404. doi:10.1623/hysj.50.3.381.65031.

  • ———. 2006. On the quest for chaotic attractors in hydrological processes. Hydrological Sciences Journal 51 (6): 1065–1091.

    Article  Google Scholar 

  • ———. 2010a. Some problems in inference from time series of geophysical processes (solicited). In European Geosciences Union General Assembly, Geophysical research abstracts, EGU2010-14229, vol. 12. Vienna: European Geosciences Union. (http://www.itia.ntua.gr/973/).

    Google Scholar 

  • ———. 2010b. A random walk on water. Hydrology and Earth System Sciences 14: 585–601.

    Article  Google Scholar 

  • ———. 2011. Hurst-Kolmogorov dynamics as a result of extremal entropy production. Physica A 390 (8): 1424–1432.

    Article  Google Scholar 

  • ———. 2013a. Climacogram-based pseudospectrum: a simple tool to assess scaling properties. In European Geosciences Union General Assembly, Geophysical research abstracts, EGU2013-4209, vol. 15. Vienna: European Geosciences Union. (http://itia.ntua.gr/1328).

    Google Scholar 

  • ———. 2013b. Encolpion of stochastics: Fundamentals of stochastic processes. Athens: Department of Water Resources and Environmental Engineering, National Technical University of Athens. (http://www.itia.ntua.gr/1317/).

    Google Scholar 

  • ———. 2014. Random musings on stochastics (Lorenz Lecture), AGU 2014 Fall Meeting. San Francisco, USA: American Geophysical Union. doi:10.13140/RG.2.1.2852.8804. (http://www.itia.ntua.gr/en/docinfo/1500/).

    Google Scholar 

  • ———. 2016. Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrological Sciences Journal 61 (2): 225–244. doi:10.1080/02626667.2015.1016950.

    Article  Google Scholar 

  • Koutsoyiannis, D., and A. Montanari. 2015. Negligent killing of scientific concepts: the stationarity case. Hydrological Sciences Journal 60 (7–8): 1174–1183.

    Article  Google Scholar 

  • Koutsoyiannis, D., F. Lombardo, E. Volpi, and S.M. Papalexiou. 2013. Is consistency a limitation?—Reply to “Further (monofractal) limitations of climactograms” by Lovejoy et al., Comment in the review of “Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology” by Lombardo et al. Hydrology and Earth System Sciences Discussions 10: C5397. (http://www.hydrol-earth-syst-sci-discuss.net/10/C5397/2013/hessd-10-C5397-2013-supplement.pdf).

    Article  Google Scholar 

  • Lo Brano, V., A. Orioli, G. Ciulla, and S. Culotta. 2011. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renewable Energy 36: 1026–1039.

    Article  Google Scholar 

  • Lombardo, F., E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou. 2014. Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology. Hydrology and Earth System Sciences 18: 243–255.

    Article  Google Scholar 

  • Mahrt, L. 1989. Intermittency of atmospheric turbulence. Journal of the Atmospheric Sciences 46: 79–95.

    Article  Google Scholar 

  • Mandelbrot, B.B. 1982. The fractal geometry of nature. New York, NY: W. H. Freeman.

    Google Scholar 

  • ———. 1999. Multifractals and 1/ƒ noise: Wild self-affinity in physics (1963–1976). New York, NY: Springer.

    Book  Google Scholar 

  • Mandelbrot, B.B., and J.W. Van Ness. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422–437.

    Article  Google Scholar 

  • Manwell, J.F., J.G. McGowan, and A.L. Rogers. 2010. Wind energy explained. 2nd ed. Amherst, MA: Wiley.

    Google Scholar 

  • Markonis, Y., and D. Koutsoyiannis. 2013. Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst−Kolmogorov dynamics. Surveys in Geophysics 34 (2): 181–207.

    Article  Google Scholar 

  • ———. 2016. Scale-dependence of persistence in precipitation records. Nature Climate Change 6: 399–401.

    Article  Google Scholar 

  • Monahan, A.H. 2006. The probability distribution of sea surface wind speeds. Part I. Theory and sea winds observations. Journal of Climate 19: 497–520.

    Article  Google Scholar 

  • ———. 2013. The Gaussian statistical predictability of wind speeds. Journal of Climate 26: 5563–5577.

    Article  Google Scholar 

  • Morgan, E.C., M. Lackner, R.M. Vogel, and L.G. Baise. 2011. Probability distributions for offshore wind speeds. Energy Conversion and Management 52 (1): 15–26.

    Article  Google Scholar 

  • O’Connell, P.E., D. Koutsoyiannis, H.F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn. 2016. The scientific legacy of Harold Edwin Hurst (1880–1978). Hydrological Sciences Journal 61 (9): 1571–1590.

    Article  Google Scholar 

  • Ouarda, T.B.M.J., C. Charron, J.Y. Shin, P.R. Marpu, A.H. Al-Mandoos, M.H. Al-Tamimi, et al. 2015. Probability distributions of wind speed in the UAE. Energy Conversion and Management 93: 414–434.

    Article  Google Scholar 

  • Papalexiou, S.M., D. Koutsoyiannis, and A. Montanari. 2010. Mind the bias! STAHY Official Workshop: Advances in statistical hydrology. Taormina, Italy: International Association of Hydrological Sciences.

    Google Scholar 

  • Papoulis, A. 1991. Probability, random variables, and stochastic processes. 3rd ed. New York, NY: McGraw-Hill.

    Google Scholar 

  • Popper, K.R. 1982. The open universe: An argument for indeterminism. London: Hutchinson.

    Google Scholar 

  • Scholz, C.H., and B.B. Mandelbrot. 1989. Fractals in geophysics. Basel: Birkhäuser Verlag.

    Book  Google Scholar 

  • She, Z.S., and E. Leveque. 1994. Universal scaling laws in fully developed turbulence. Physical Review Letters 72: 336.

    Article  Google Scholar 

  • Singh, S.K., and G.S. Maddala. 1976. A function for size distribution of incomes. Econometrica 44: 963–970.

    Article  Google Scholar 

  • Stumpf, M.P.H., and M.A. Porter. 2012. Critical truths about power laws. Science 335: 665–666.

    Article  Google Scholar 

  • Tessier, Y., S. Lovejoy, and D. Schertzer. 1993. Universal multifractals: theory and observations for rain and clouds. Journal of Applied Meteorology 32 (2): 223–250.

    Article  Google Scholar 

  • Veneziano, D., and A. Langousis. 2010. Scaling and fractals in hydrology. In Advances in data-based approaches for hydrologic modeling and forecasting, ed. B. Sivakumar and R. Berndtsson . Singapore: World Scientific.145 pages

    Google Scholar 

  • von Kármán, T. 1940. The engineer grapples with nonlinear problems. Bulletin of the American Mathematical Society 46: 615–683. doi:10.1090/S0002-9904-1940-07266-0.

    Article  Google Scholar 

  • Wackernagel, H. 1995. Multivariate geostatistics. Berlin: Springer.

    Book  Google Scholar 

  • ———. 1998. Multivariate geostatistics, 2nd completely revised edition. Berlin: Springer.

    Book  Google Scholar 

  • Wilczek, M., A. Daitche, and R. Friedrich. 2011. On the velocity distribution in homogeneous isotropic turbulence: Correlations and deviations from Gaussianity. Journal of Fluid Mechanics 676: 191–217.

    Article  Google Scholar 

  • Wu, J., J. Wanga, and D. Chib. 2013. Wind energy potential assessment for the site of Inner Mongolia in China. Renewable and Sustainable Energy Reviews 21: 215–228.

    Article  Google Scholar 

  • Yaglom, A.M. 1987. Correlation theory of stationary and related random functions. New York, NY: Springer.

    Google Scholar 

  • Yari, G.H., and G.R.M. Borzadaran. 2010. Entropy for Pareto-types and its order statistics distributions. Communications in Information and Systems 10 (3): 193–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetris Koutsoyiannis .

Editor information

Editors and Affiliations

Appendices

Proof of Infeasibility of Too Steep Slopes in Power Spectrum at Low Frequencies

This proof is summarized here from Koutsoyiannis (2013b) and Koutsoyiannis et al. (2013).

Let us assume the contrary, i.e., that for frequency range 0 ≤ wε (with ε however small) the log-log derivative is s #(w) = β, or else s(w) = α w β where α and β are constants, with β <  − 1. As a result of (2) and (4) the climacogram is related to power spectrum by:

$$ \gamma (k)=\underset{0}{\overset{\infty }{\int }}s(w)\ {\mathrm{sinc}}^2\left(\uppi wk\right)\mathrm{d}w \vspace*{-3pt} $$
(30)

The sinc2 function within the integral takes significant values only for w < 1/k (cf. Papoulis 1991, p. 433). Assuming a scale k ≫ 1/ε,

$$ \gamma (k)=\underset{0}{\overset{\infty }{\int }}s(w){\mathrm{sinc}}^2\left(\uppi wk\right)\mathrm{d}w\approx \underset{0}{\overset{\varepsilon }{\int }}{\alpha w}^{\beta }\ {\mathrm{sinc}}^2\left(\uppi wk\right)\mathrm{d}w \vspace*{-3pt} $$
(31)

On the other hand, it can be easily seen that, for 0 < w < 1/k, the following inequality holds:

$$ \operatorname{sinc}\left(\uppi wk\right)\ge 1- wk\ge 0 $$
(32)

Since ε ≫ 1/k, while the function in the integral (31) is nonnegative,

$$ \gamma (k)\approx \underset{0}{\overset{\varepsilon }{\int }}{\alpha w}^{\beta }{\mathrm{sinc}}^2\left(\uppi wk\right)\mathrm{d}w\ge \underset{0}{\overset{1/k}{\int }}{\alpha w}^{\beta }{\mathrm{sinc}}^2\left(\uppi wk\right)\mathrm{d}w\ge \underset{0}{\overset{1/k}{\int }}{\alpha w}^{\beta }{\left(1- wk\right)}^2\mathrm{d}w $$
(33)

By substituting ω = wk into Eq. (33), we find:

$$ \gamma (k)\ge a{k}^{-\beta -1}\underset{0}{\overset{1}{\int }}{\omega}^{\beta }{\left(1-\omega \right)}^2\mathrm{d}\omega $$
(34)

To evaluate the integral in (34) we take the limit for q → ∞ of the integral:

$$ B(q):= \underset{1/q}{\overset{1}{\int }}{\omega}^{\beta }{\left(1-\omega \right)}^2\mathrm{d}\upsilon =\frac{1-q^{-1-\beta }}{1+\beta }-2\frac{1-{q}^{-2-\beta }}{2+\beta }+\frac{1-q^{-3-\beta }}{3+\beta } $$
(35)

Clearly, the limit of B(q) as q → ∞ depends on that of the term with the highest exponent, i.e., q −1 – β. For β < −1 this term diverges and thus, B(0) = +∞. Then, by virtue of the inequality (34), γ(k)= ∞. For a (mean) ergodic processes γ(k) should necessary tend to 0 for k → ∞ (Papoulis 1991, p. 429). Therefore, the process is nonergodic.

It is interesting to note here that, when |β| < 1, the integral in (31) can be evaluated to give:

$$ \gamma (k)\approx \alpha \underset{0}{\overset{\infty }{\int }}{w}^{\beta }\ {\mathrm{sinc}}^2\left(\uppi w\varDelta \right)\mathrm{d}w=\frac{\alpha \Gamma \left(1+\beta \right)\operatorname{sinc}\left(\uppi \beta /2\right)}{2\left(1-\beta \right){\left(2\uppi \right)}^{\beta }{k}^{1+\beta }} $$
(36)

Clearly, for k → ∞, the last expression gives γ(k) → 0 and thus for |β| < 1 the process is mean ergodic.

This analysis for β < −1 generalizes a result by Papoulis (1991, p. 434) who shows that an impulse at w = 0 corresponds to a non-ergodic process.

Literature Review on the Distribution Function of Wind Speed

A large variety of distributions in the literature (with the most common to be Gaussian, gamma, Weibull, lognormal, Pareto and generalizations thereof as well as mixtures with each other) show equally good agreement with atmospheric wind measurements recorded at different sites around the globe with different climatic conditions.

A sample of recent publications is listed in Table 2 along with the proposed distributions. However, some distributions seem to exhibit good agreement with data at the left or right tail mostly due to different lengths of the examined time series, while arguably most distributions do not exhibit good agreement for the whole range.

Table 2 Recent publications on the distribution function of wind speed

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Koutsoyiannis, D., Dimitriadis, P., Lombardo, F., Stevens, S. (2018). From Fractals to Stochastics: Seeking Theoretical Consistency in Analysis of Geophysical Data. In: Tsonis, A. (eds) Advances in Nonlinear Geosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58895-7_14

Download citation

Publish with us

Policies and ethics