Use of Wearable Inertial Sensor in the Assessment of Timed-Up-and-Go Test: Influence of Device Placement on Temporal Variable Estimation

  • Stefano Negrini
  • Mauro Serpelloni
  • Cinzia Amici
  • Massimiliano Gobbo
  • Clara Silvestro
  • Riccardo Buraschi
  • Alberto Borboni
  • Diego Crovato
  • Nicola Francesco LopomoEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 192)


The “Timed Up and Go” (TUG) test is widely used in various disorders to evaluate subject’s mobility, usually evaluating only time execution. TUG test specificity could be improved by using instrumented assessment based on inertial sensors. Position of the sensor is critical. This study aimed to assess the reliability and validity of an inertial sensor placed in three different positions to correctly segment the different phases in the TUG test. Finding demonstrated good reliability of the proposed methodology compared to the gold standard motion analysis approach based on surface markers and an optoelectronic system. Placing the sensor just beneath the lumbar-sacral joint reported the lower values of deviation with respect to the gold standard. Optimized position can extend the proposed methodology from the clinical context towards ubiquitous solutions in an ecological approach.


Inertial sensor Sensor position Timed-Up and Go test Optoelectronic system Phases durations 



All the authors would like to thank Francesco Tirapelle for his huge contribution to the study. SN, MG and NFL acknowledge also the “Laboratorio di Fisiologia Clinica Integrativa” (FCI Lab) of the “Università degli Studi di Brescia” for the support.


  1. 1.
    Mathias, S., Nayak, U.S., Isaacs, B.: Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67, 387–389 (1986)Google Scholar
  2. 2.
    Podsiadlo, D., Richardson, S.: The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39, 142–148 (1991)CrossRefGoogle Scholar
  3. 3.
    Bloem, B.R., Marinus, J., Almeida, Q., Dibble, L., Nieuwboer, A., Post, B., Ruzicka, E., Goetz, C., Stebbins, G., Martinez-Martin, P., Schrag, A.: Movement disorders society rating scales committee: measurement instruments to assess posture, gait, and balance in Parkinson’s disease: critique and recommendations. Mov. Disord. 31(9), 1342–1355 (2016)CrossRefGoogle Scholar
  4. 4.
    Cardon-Verbecq, C., Loustau, M., Guitard, E., Bonduelle, M., Delahaye, E., Koskas, P., Raynaud-Simon, A.: Predicting falls with the cognitive timed up-and-go dual task in frail older patients. Ann. Phys. Rehabil. Med. 60, 83–86 (2016)CrossRefGoogle Scholar
  5. 5.
    Timmermans, C., Roerdink, M., van Ooijen, M.W., Meskers, C.G., Janssen, T.W., Beek, P.J.: Walking adaptability therapy after stroke: study protocol for a randomized controlled trial. Trials 17, 425 (2016)CrossRefGoogle Scholar
  6. 6.
    Gautschi, O.P., Joswig, H., Corniola, M.V., Smoll, N.R., Schaller, K., Hildebrandt, G., Stienen, M.N.: Pre-and postoperative correlation of patient-reported outcome measures with standardized Timed Up and Go (TUG) test results in lumbar degenerative disc disease. Acta Neurochir. (Wien) 158, 1875–1881 (2016)CrossRefGoogle Scholar
  7. 7.
    Gautschi, O.P., Corniola, M.V., Joswig, H., Smoll, N.R., Chau, I., Jucker, D., Stienen, M.N.: The timed up and go test for lumbar degenerative disc disease. J. Clin. Neurosci. 22, 1943–1948 (2015)CrossRefGoogle Scholar
  8. 8.
    Kristensen, M.T., Bandholm, T., Holm, B., Ekdahl, C., Kehlet, H.: Timed Up & Go test score in patients with hip fracture is related to the type of walking aid. Arch. Phys. Med. Rehabil. 90, 1760–1765 (2009)CrossRefGoogle Scholar
  9. 9.
    Weiss, A., Mirelman, A., Giladi, N., Barnes, L.L., Bennett, D.A., Buchman, A.S., Hausdorff, J.M.: Transition between the timed up and go turn to sit subtasks: is timing everything? J. Am. Med. Dir. Assoc. 17, 864.e9–864.e15 (2016)Google Scholar
  10. 10.
    Reinfelder, S., Hauer, R., Barth, J., Klucken, J., Eskofier, B.M.: Timed Up-and-Go phase segmentation in Parkinson’s disease patients using unobtrusive inertial sensors. Proc. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 5171–5174 (2015)Google Scholar
  11. 11.
    Mellone, S., Tacconi, C., Chiari, L.: Validity of a smartphone-based instrumented Timed Up and Go. Gait Posture 36, 163–165 (2012)CrossRefGoogle Scholar
  12. 12.
    Salarian, A., Horak, F.B., Zampieri, C., Carlson-Kuhta, P., Nutt, J.G., Aminian, K.: iTUG, a sensitive and reliable measure of mobility. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 303–310 (2010)CrossRefGoogle Scholar
  13. 13.
    Smith, E., Walsh, L., Doyle, J., Greene, B., Blake, C.: The reliability of the quantitative timed up and go test (QTUG) measured over five consecutive days under single and dual-task conditions in community dwelling older adults. Gait Posture 43, 239–244 (2016)CrossRefGoogle Scholar
  14. 14.
    Van Lummel, R.C., Walgaard, S., Hobert, M.A., Maetzler, W., Van Dieën, J.H., Galindo-Garre, F., Terwee, C.B.: Intra-rater, inter-rater and test-retest reliability of an instrumented Timed Up and Go (iTUG) test in patients with Parkinson’s disease. PLoS One 11, 1–11 (2016)Google Scholar
  15. 15.
    Coulthard, J.T., Treen, T.T., Oates, A.R., Lanovaz, J.L.: Evaluation of an inertial sensor system for analysis of Timed-Up-and-Go under dual-task demands. Gait Posture 41, 882–887 (2015)CrossRefGoogle Scholar
  16. 16.
    Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J.G., Horak, F.B.: The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 81, 171–176 (2010)CrossRefGoogle Scholar
  17. 17.
    Mancini, M., Priest, K.C., Nutt, J.G., Horak, F.B.: Quantifying freezing of gait in Parkinson’s disease during the instrumented timed up and go test. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 1198–201 (2012)Google Scholar
  18. 18.
    Sheehan, K.J., Greene, B.R., Cunningham, C., Crosby, L., Kenny, R.A.: Early identification of declining balance in higher functioning older adults, an inertial sensor based method. Gait Posture 39, 1034–1039 (2014)CrossRefGoogle Scholar
  19. 19.
    Greene, B.R., Doheny, E.P., O’Halloran, A., Kenny, R.A.: Frailty status can be accurately assessed using inertial sensors and the TUG test. Age Ageing 43, 406–411 (2014)CrossRefGoogle Scholar
  20. 20.
    Lockhart, T.E., Yeoh, H.T., Soangra, R., Jongprasithporn, M., Zhang, J., Wu, X., Ghosh, A.: Non-invasive fall risk assessment in community dwelling elderly with wireless inertial measurement units. Biomed. Sci. Instrum. 48, 260–267 (2012)Google Scholar
  21. 21.
    Zakaria, N.A., Kuwae, Y., Tamura, T., Minato, K., Kanaya, S.: Quantitative analysis of fall risk using TUG test. Comput. Methods Biomech. Biomed. Engin. 5842, 37–41 (2013)Google Scholar
  22. 22.
    Greene, B.R., Redmond, S.J., Caulfield, B.: Fall risk assessment through automatic combination of clinical fall risk factors and body-worn sensor data. IEEE J. Biomed. Health Informat. PP, 1 (2016). Epub ahead of printGoogle Scholar
  23. 23.
    Palmerini, L., Mellone, S., Rocchi, L., Chiari, L.: Dimensionality reduction for the quantitative evaluation of a smartphone-based Timed Up and Go test. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 7179–7182 (2011)Google Scholar
  24. 24.
    Greene, B.R., Rutledge, S., McGurgan, I., McGuigan, C., O’Connell, K., Caulfield, B., Tubridy, N.: Assessment and classification of early-stage multiple sclerosis with inertial sensors: comparison against clinical measures of disease state. IEEE J. Biomed. Heal. Informat. 19, 1356–1361 (2015)CrossRefGoogle Scholar
  25. 25.
    Coste, C.A., Sijobert, B., Pissard-Gibollet, R., Pasquier, M., Espiau, B., Geny, C.: Detection of freezing of gait in Parkinson disease: preliminary results. Sensors (Switzerland) 14, 6819–6827 (2014)CrossRefGoogle Scholar
  26. 26.
    Capecci, M., Pepa, L., Verdini, F., Ceravolo, M.G.: A smartphone-based architecture to detect and quantify freezing of gait in Parkinson’s disease. Gait Posture 50, 28–33 (2016)CrossRefGoogle Scholar
  27. 27.
    Zampieri, C., Salarian, A., Carlson-Kuhta, P., Nutt, J.G., Horak, F.B.: Assessing mobility at home in people with early Parkinson’s disease using an instrumented Timed Up and Go test. Parkinsonism Relat. Disord. 17, 277–280 (2011)CrossRefGoogle Scholar
  28. 28.
    Mirelman, A., Weiss, A., Buchman, A.S., Bennett, D.A., Giladi, N., Hausdorff, J.M.: Association between performance on Timed Up and Go subtasks and mild cognitive impairment: further insights into the links between cognitive and motor function. J. Am. Geriatr. Soc. 62, 673–678 (2014)CrossRefGoogle Scholar
  29. 29.
    Vervoort, D., Vuillerme, N., Kosse, N., Hortobágyi, T., Lamoth, C.J.C.: Multivariate analyses and classification of inertial sensor data to identify aging effects on the Timed-Up-and-Go test. PLoS One 11, e0155984 (2016)CrossRefGoogle Scholar
  30. 30.
    Galán-Mercant, A., Cuesta-Vargas, A.I.: Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res. Notes 7, 100 (2014) CrossRefGoogle Scholar
  31. 31.
    Galán-Mercant, A., Cuesta-Vargas, A.I.: Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Physiol. Meas. 36, 1929–1942 (2015)CrossRefGoogle Scholar
  32. 32.
    Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Maidan, I., Giladi, N., Gurevich, T., Hausdorff, J.M.: Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med. Eng. Phys. 32, 119–125 (2010)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Stefano Negrini
    • 1
    • 2
  • Mauro Serpelloni
    • 3
  • Cinzia Amici
    • 4
  • Massimiliano Gobbo
    • 1
  • Clara Silvestro
    • 5
  • Riccardo Buraschi
    • 2
  • Alberto Borboni
    • 4
  • Diego Crovato
    • 5
  • Nicola Francesco Lopomo
    • 3
    Email author
  1. 1.Dipartimento di Scienze Cliniche e SperimentaliUniversità degli Studi di BresciaBresciaItaly
  2. 2.IRCCS Fondazione Don Carlo Gnocchi ONLUSMilanoItaly
  3. 3.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di BresciaBresciaItaly
  4. 4.Dipartimento di Ingegneria Meccanica e IndustrialeUniversità degli Studi di BresciaBresciaItaly
  5. 5.BTS S.p.A.Garbagnate MilaneseItaly

Personalised recommendations