Skip to main content

Mode-Locked Laser Model

  • Chapter
  • First Online:
Book cover Passively Mode-Locked Semiconductor Lasers

Part of the book series: Springer Theses ((Springer Theses))

  • 548 Accesses

Abstract

Various models exist for passively mode-locked lasers, each with their own advantages and restrictions. One of the earliest models was based on a master equation approach, developed by Haus, which allows the mode-locked pulses to be described analytically under the assumption of only small changes in the gain and losses per cavity round trip [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. Haus, Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11, 736 (1975)

    Article  ADS  Google Scholar 

  2. J. Mulet, J. Mørk, Analysis of timing jitter in external-cavity modelocked semiconductor lasers. IEEE J. Quantum Electron. 42, 249 (2006)

    Article  ADS  Google Scholar 

  3. E.A. Avrutin, B.M. Russell, Dynamics and spectra of monolithic mode-locked laser diodes under external optical feedback. IEEE J. Quantum Electron. 45, 1456 (2009)

    Article  ADS  Google Scholar 

  4. J. Javaloyes, S. Balle, Mode-locking in semiconductor Fabry-Pérot lasers. IEEE J. Quantum Electron. 46(7), 1023–1030 (2010)

    Article  ADS  Google Scholar 

  5. J. Javaloyes, S. Balle, Anticolliding design for monolithic passively modelocked semiconductor lasers. Opt. Lett. 36, 4407–4409 (2011)

    Article  ADS  Google Scholar 

  6. M. Rossetti, P. Bardella, I. Montrosset, Time-domain travelling-wave model for quantum dot passively mode-locked lasers. IEEE J. Quantum Electron. 47, 139 (2011)

    Article  ADS  Google Scholar 

  7. M. Rossetti, P. Bardella, I. Montrosset, Modeling passive mode-locking in quantum dot lasers: a comparison between a finite-difference traveling-wave model and a delayed differential equation approach. IEEE J. Quantum Electron. 47, 569 (2011)

    Article  ADS  Google Scholar 

  8. M. Radziunas, A. Vladimirov, E.A. Viktorov, G. Fiol, H. Schmeckebier, D. Bimberg, Pulse broadening in quantum-dot mode-locked semiconductor lasers: simulation, analysis, and experiments. IEEE J. Quantum Electron. 47, 935–943 (2011)

    Article  ADS  Google Scholar 

  9. H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, Two-section quantum-dot mode-locked lasers under optical feedback: pulse broadening and harmonic operation. IEEE J. Quantum Electron. 48, 872 (2012)

    Article  ADS  Google Scholar 

  10. V. Moskalenko, J. Javaloyes, S. Balle, M.K. Smit, E.A.J.M. Bente, Theoretical study of colliding pulse passively mode-locked semiconductor ring lasers with an intracavity Mach–Zehnder modulator. IEEE J. Quantum Electron. 50(6), 415–422 (2014)

    Google Scholar 

  11. A. Vladimirov, D.V. Turaev, G. Kozyreff, Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29, 1221 (2004)

    Article  ADS  Google Scholar 

  12. A. Vladimirov, D.V. Turaev, Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72, 033808 (2005)

    Article  ADS  Google Scholar 

  13. C. Otto, K. Lüdge, A. Vladimirov, M. Wolfrum, E. Schöll, Delay induced dynamics and jitter reduction of passively mode-locked semiconductor laser subject to optical feedback. New J. Phys. 14, 113033 (2012)

    Article  ADS  Google Scholar 

  14. S. Sanders, A. Yariv, J. Paslaski, J.E. Ungar, H.A. Zarem, Passive mode locking of a two-section multiple quantum well laser at harmonics of the cavity round-trip frequency. Appl. Phys. Lett. 58, 681–683 (1990)

    Article  ADS  Google Scholar 

  15. U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, R. Kaiser, 40GHz mode locked semiconductor lasers: theory, simulation and experiments. Opt. Quantum Electron. 38, 495 (2006)

    Article  Google Scholar 

  16. D. Arsenijevic, M. Kleinert, D. Bimberg, Phase noise and jitter reduction by optical feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett. 103, 231101 (2013)

    Article  ADS  Google Scholar 

  17. M. Marconi, J. Javaloyes, S. Balle, M. Giudici, How lasing localized structures evolve out of passive mode locking. Phys. Rev. Lett. 112(22), 223901 (2014)

    Article  ADS  Google Scholar 

  18. C. Otto, L.C. Jaurigue, E. Schöll, K. Lüdge, Optimization of timing jitter reduction by optical feedback for a passively mode-locked laser. IEEE Photonics J. 6, 1501814 (2014)

    Article  Google Scholar 

  19. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  20. B. Lingnau, W.W. Chow, E. Schöll, K. Lüdge, Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis. New J. Phys. 15, 093031 (2013)

    Article  ADS  Google Scholar 

  21. B. Lingnau, W.W. Chow, K. Lüdge, Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics. Opt. Express 22, 4867–4879 (2014)

    Article  ADS  Google Scholar 

  22. B. Lingnau, K. Lüdge, Analytic characterization of the dynamic regimes of quantum-dot lasers. Photonics 2, 402–413 (2015)

    Article  Google Scholar 

  23. A. Vladimirov, D.V. Turaev, New model for mode-locking in semiconductor lasers. Radiophys. Quantum Electron. 47, 769–776 (2004)

    Article  ADS  Google Scholar 

  24. A. Vladimirov, D. Rachinskii, M. Wolfrum, Modeling of passively modelocked semiconductor lasers, in Nonlinear Laser Dynamics-From Quantum Dots to Cryptography, Reviews in Nonlinear Dynamics and Complexity, ed. by K. Lüdge (Wiley, Weinheim, 2011), pp. 183–213

    Google Scholar 

  25. H. Haken, Laser Theory (Springer, New York, 1983)

    Book  Google Scholar 

  26. B. Tromborg, H.E. Lassen, H. Olesen, Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra. IEEE J. Quantum Electron. 30, 939 (1994)

    Article  ADS  Google Scholar 

  27. G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22, 43–122 (1998)

    Article  ADS  Google Scholar 

  28. E. Schöll, Dynamic theory of picosecond optical pulse shaping by gain-switched semiconductor laser amplifiers. IEEE J. Quantum Electron. 24, 435–442 (1988)

    Article  ADS  Google Scholar 

  29. F.T. Arecchi, G.L. Lippi, G.P. Puccioni, J.R. Tredicce, Deterministic chaos in laser with injected signal. Opt. Commun. 51, 308–315 (1984)

    Article  ADS  Google Scholar 

  30. M. Asada, A. Kameyama, Gain and intervalence band absorption in quantum-well lasers. IEEE J. Quantum Electron. 20, 745–753 (1984)

    Article  ADS  Google Scholar 

  31. K.Y. Lau, P.L. Derry, A. Yariv, Ultimate limit in low threshold quantum well GaAlAs semiconductor lasers. Appl. Phys. Lett. 52, 88–90 (1987)

    Article  ADS  Google Scholar 

  32. M. Haji, L. Hou, A.E. Kelly, J. Akbar, J.H. Marsh, J.M. Arnold, C.N. Ironside, High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes. Opt. Express 20, 3268–3274 (2012)

    Article  ADS  Google Scholar 

  33. O. Nikiforov, L.C. Jaurigue, L. Drzewietzki, K. Lüdge, S. Breuer, Experimental demonstration of change of dynamical properties of a passively mode-locked semiconductor laser subject to dual optical feedback by dual full delay-range tuning. Opt. Express 24, 14301–14310 (2016)

    Article  ADS  Google Scholar 

  34. J.P. Hohimer, G.A. Vawter, Passive mode locking of monolithic semiconductor ring lasers at 86 GHz. Appl. Phys. Lett. 63, 1598–1600 (1993)

    Article  ADS  Google Scholar 

  35. A.A. Ukhanov, A. Stintz, P.G. Eliseev, K.J. Malloy, Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers. Appl. Phys. Lett. 84, 1058–1060 (2004)

    Article  ADS  Google Scholar 

  36. H. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000)

    Article  Google Scholar 

  37. C. Otto, Dynamics of Quantum Dot Lasers-Effects of Optical Feedback and External Optical Injection, Springer Theses (Springer, Heidelberg, 2014)

    Google Scholar 

  38. D.B. Malins, A. Gomez-Iglesias, S.J. White, W. Sibbett, A. Miller, E.U. Rafailov, Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3\(\mu \)m. Appl. Phys. Lett. 89, 171111 (2006)

    Article  ADS  Google Scholar 

  39. E.O. Göbel, H. Jung, J. Kuhl, K. Ploog, Recombination enhancement due to carrier localization in quantum well structures. Phys. Rev. Lett. 51, 1588–1591 (1983)

    Article  ADS  Google Scholar 

  40. J. Hader, J.V. Moloney, S.W. Koch, Structural dependence of carrier capture time in semiconductor quantum-well lasers. Appl. Phys. Lett. 85, 369–371 (2004)

    Article  ADS  Google Scholar 

  41. D.J. Jones, L.M. Zhang, J.E. Carroll, D. Marcenac, Dynamics of monolithic passively mode-locked semiconductor lasers. IEEE J. Quantum Electron. 31, 1051–1058 (1995)

    Article  ADS  Google Scholar 

  42. J.R. Karin, R.J. Helkey, D.J. Derickson, R. Nagarajan, D.S. Allin, J.E. Bowers, R.L. Thornton, Ultrafast dynamics in field-enhanced saturable absorbers. Appl. Phys. Lett. 64, 676–678 (1994)

    Article  ADS  Google Scholar 

  43. G. Fiol, M. Kleinert, D. Arsenijevic, D. Bimberg, 1.3\(\mu \)m range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback. Semicond. Sci. Technol. 26, 014006 (2011)

    Article  ADS  Google Scholar 

  44. G. Fiol, 1.3\(\mu \)m Monolithic Mode-Locked Quantum-Dot Semiconductor Laser, PhD thesis. (Technische Universität Berlin, 2011)

    Google Scholar 

  45. G. Fiol, D. Arsenijevic, D. Bimberg, A. Vladimirov, M. Wolfrum, E.A. Viktorov, P. Mandel, Hybrid mode-locking in a 40 GHz monolithic quantum dot laser. Appl. Phys. Lett. 96, 011104 (2010)

    Article  ADS  Google Scholar 

  46. R.M. Arkhipov, A.S. Pimenov, M. Radziunas, D. Rachinskii, A. Vladimirov, D. Arsenijevic, H. Schmeckebier, D. Bimberg, Hybrid mode locking in semiconductor lasers: simulations, analysis, and experiments. IEEE J. Quantum Electron. 19(4), 1100208 (2013)

    Article  Google Scholar 

  47. N. Rebrova, G. Huyet, D. Rachinskii, A. Vladimirov, Optically injected mode-locked laser. Phys. Rev. E 83, 066202 (2011)

    Article  ADS  Google Scholar 

  48. A.S. Pimenov, E.A. Viktorov, S.P. Hegarty, T. Habruseva, G. Huyet, D. Rachinskii, A. Vladimirov, Bistability and hysteresis in an optically injected two-section semiconductor laser. Phys. Rev. A 89, 052903 (2014)

    ADS  Google Scholar 

  49. T. Habruseva, D. Arsenijevic, M. Kleinert, D. Bimberg, G. Huyet, S.P. Hegarty, Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers. Appl. Phys. Lett. 104, 1–4 (2014)

    Article  Google Scholar 

  50. C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, D. Syvridis, Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback. Opt. Commun. 313, 248–255 (2014)

    Article  ADS  Google Scholar 

  51. L.C. Jaurigue, O. Nikiforov, E. Schöll, S. Breuer, K. Lüdge, Dynamics of a passively mode-locked semiconductor laser subject to dual-cavity optical feedback. Phys. Rev. E 93, 022205 (2016)

    Article  ADS  Google Scholar 

  52. S. Slepneva, B. Kelleher, B. O’Shaughnessy, S.P. Hegarty, A. Vladimirov, G. Huyet, Dynamics of Fourier domain mode-locked lasers. Opt. Express 21, 19240–19251 (2013)

    Article  ADS  Google Scholar 

  53. A. Vladimirov, A.S. Pimenov, D. Rachinskii, Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser. IEEE J. Quantum Electron. 45, 462–468 (2009)

    Article  ADS  Google Scholar 

  54. H. Simos, C. Mesaritakis, T. Xu, P. Bardella, I. Montrosset, D. Syvridis, Numerical analysis of passively mode-locked quantum-dot lasers with absorber section at the low-reflectivity output facet. IEEE J. Quantum Electron. 49, 3–10 (2013)

    Article  ADS  Google Scholar 

  55. V. Moskalenko, K.A. Williams, E.A.J.M. Bente, Integrated extended-cavity 1.5-\(\mu \)m semiconductor laser switchable between self- and anti-colliding pulse passive mode-locking configuration. IEEE J. Sel. Top. Quantum Electron. 21, 1101306 (2015)

    Article  Google Scholar 

  56. J.P. Zhuang, V. Pusino, Y. Ding, S.C. Chan, M. Sorel, Experimental investigation of anti-colliding pulse mode-locked semiconductor lasers. Opt. Lett. 40, 617–620 (2015)

    Article  ADS  Google Scholar 

  57. A. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijevic, M. Kleinert, D. Bimberg, A.S. Pimenov, D. Rachinskii, Dynamical regimes in a monolithic passively mode-locked quantum dot laser. J. Opt. Soc. Am. B 27, 2102 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Jaurigue .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jaurigue, L. (2017). Mode-Locked Laser Model. In: Passively Mode-Locked Semiconductor Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58874-2_2

Download citation

Publish with us

Policies and ethics