Skip to main content

Spacetime Primary Approaches: Path Integrals

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3596 Accesses

Abstract

This chapter further develops the position in which spacetime is primary which we set up in Chaps. 6, 10, 11, 12 and 26. We now consider this at the quantum level using path integral formulations for gauge theory and for general relativity. The general-relativistic case involves various further subtleties; most facets of the Problem of Time have counterparts here; the inner product problem, however, has been traded for a measure problem. By facet interference, this is furthermore a formidable diffeomorphism-invariant measure problem. This book has so far addressed the Frozen Formalism Problem facet of the Problem of Time by identifying it as stemming from Background Independence’s Temporal Relationalism aspect, which we implemented by reformulating the principles of dynamics and canonical quantum theory. We now extend this by additionally forging a Temporal Relationalism implementing version of the path integral formulation. We finally outline approaches to physics which make concurrent use of both canonical and path-integral theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, the Fadde’ev–Popov method is on some occasions co-attributed to DeWitt [886], who applied it to the case of GR as well [238, 239].

  2. 2.

    This Measure Problem is, additionally, a technical trade-off [193], in the sense of having it instead of the Canonical Approach’s Operator Ordering Problem.

  3. 3.

    Or almost-discrete, e.g. involving an ancillary continuum sample space in the Causal Sets Approach or eventually taking a continuum limit in the Causal Dynamical Triangulation Approach.

References

  1. Anderson, E.: The problem of time and quantum cosmology in the relational particle mechanics arena. arXiv:1111.1472

  2. Barrett, J.W., Crane, L.: Relativistic spin networks and quantum gravity. J. Math. Phys. 39, 3296 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bojowald, M., Hoehn, P.A., Tsobanjan, A.: An effective approach to the problem of time. Class. Quantum Gravity 28, 035006 (2011). arXiv:1009.5953

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bojowald, M., Hoehn, P.A., Tsobanjan, A.: Effective approach to the problem of time: general features and examples. Phys. Rev. D 83, 125023 (2011). arXiv:1011.3040

    Article  ADS  Google Scholar 

  5. Carlip, S.: Quantum Gravity in \(2 + 1\) Dimensions. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  6. DeWitt, B.S.: Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 160, 1195 (1967)

    Article  ADS  MATH  Google Scholar 

  7. DeWitt, B.S.: Quantum theory of gravity. III. Applications of the covariant theory. Phys. Rev. 160, 1239 (1967)

    Article  ADS  MATH  Google Scholar 

  8. Dittrich, B., Hoehn, P.A.: Constraint analysis for variational discrete systems. J. Math. Phys. 54, 093505 (2013). arXiv:1303.4294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fadde’ev, L.D.: The Feynman integral for singular Lagrangians. Theor. Math. Phys. 1, 1 (1969)

    Article  MathSciNet  Google Scholar 

  10. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gibbons, G.W., Hawking, S.W., Perry, M.: Nucl. Phys. B 138, 141 (1978)

    Article  ADS  Google Scholar 

  12. Halliwell, J.J., Louko, J.: Steepest descent contours in the path integral approach to quantum cosmology. 3. A general method with applications to minisuperspace models. Phys. Rev. D 42, 3997 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Halvorson, H., Mueger, M.: Algebraic quantum field theory. math-ph/0602036

  14. Hartle, J.B., Schleich, K.: The conformal rotation in linearized gravity. In: Batalin, I., Isham, C.J., Vilkovilsky, G.A. (eds.) Quantum Field Theory and Quantum Statistics, vol. 2. Hilger, Bristol (1987)

    Google Scholar 

  15. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  16. Hoehn, P.A., Kubalova, E., Tsobanjan, A.: Effective relational dynamics of a nonintegrable cosmological model. Phys. Rev. D 86, 065014 (2012). arXiv:1111.5193

    Article  ADS  Google Scholar 

  17. Isham, C.J.: Quantum gravity—an overview. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon, Oxford (1981)

    Google Scholar 

  18. Isham, C.J.: Aspects of Quantum Gravity. Lectures Given at Conference: C85–07-28.1 (Scottish Summer School 1985:0001), available on KEK archive

    Google Scholar 

  19. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  20. Loll, R.: Discrete approaches to quantum gravity in four dimensions. Living Rev. Relativ. 1, 13 (1998). gr-qc/9805049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  22. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  23. Oriti, D.: Disappearance and emergence of space and time in quantum gravity. arXiv:1302.2849

  24. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Perseus Books, Reading (1995)

    Google Scholar 

  25. Sundermeyer, K.: Constrained Dynamics. Springer, Berlin (1982)

    MATH  Google Scholar 

  26. Weinberg, S.: The Quantum Theory of Fields. Vol. II. Modern Applications. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Williams, R.M., Tuckey, P.A.: Regge calculus: a bibliography and brief review. Class. Quantum Gravity 9, 1409 (1992)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Spacetime Primary Approaches: Path Integrals. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_52

Download citation

Publish with us

Policies and ethics