Skip to main content

Semiclassicality and Quantum Cosmology: Interpretative Issues

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3602 Accesses

Abstract

This is a brief account of coherent states, Wigner functionals, decoherence, environments and whether physics is only about subsystems, in support of many of the book’s chapters on quantum cosmology, histories and records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More formally, one is dealing here with the Quantum Measurement Problem (outlined in Sect. 5.1 and [487]), which remains an unsettled, and major, area of research (see e.g. [773] for a detailed review).

  2. 2.

    In fact, Crane [225] considers defining observers as boundaries of localized regions. Though clearly not all such boundaries will have observes realized upon them. Also, sizeable boundaries would need to be populated by many observers, forming a ‘shell of observers’ or a ‘shell array of detectors’. The Information Gathering and Utilizing System concept may help as regards practically realizing such shells.

References

  1. Balsz, N., Jennings, B.K.: Wigner’s function and other distribution functions in mock phase spaces. Phys. Rep. 104, 347 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bialynicki-Birula, I., Cieplak, M., Kaminski, J.: Theory of Quanta. Oxford University Press, New York (1992)

    Google Scholar 

  3. Brack, M., Bhaduri, R.: Semiclassical Physics. Addison–Wesley, Reading (1997)

    MATH  Google Scholar 

  4. Carruthers, P., Zachariasen, F.: Quantum collision theory with phase-space distributions. Rev. Mod. Phys. 55, 245 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. Crane, L.: Clock and category; is quantum gravity algebraic. J. Math. Phys. 36, 6180 (1995). arXiv:gr-qc/9504038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Crane, L.: Categorical physics. hep-th/9301061

  7. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  8. Halliwell, J.J.: Somewhere in the universe: where is the information stored when histories decohere? Phys. Rev. D 60, 105031 (1999). quant-ph/9902008

    Article  ADS  MathSciNet  Google Scholar 

  9. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Isham, C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995)

    Book  MATH  Google Scholar 

  11. Kiefer, C.: Continuous measurement of minisuperspace variables by higher multipoles. Class. Quantum Gravity 4, 1369 (1987)

    Article  ADS  Google Scholar 

  12. Kiefer, C.: Conceptual issues in quantum cosmology. Lect. Notes Phys. 541, 158 (2000). gr-qc/9906100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  14. Landsman, N.P.: Between classical and quantum. In: Handbook of the Philosophy of Physics. Elsevier, Amsterdam (2005). quant-ph/0506082

    Google Scholar 

  15. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  16. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  17. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996). quant-ph/9609002v2

    Article  MathSciNet  MATH  Google Scholar 

  18. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005). quant-ph/0312059

    Article  ADS  Google Scholar 

  19. Tatarskii, V.I.: The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26, 311 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  21. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  22. Zeh, H.D.: Emergence of classical time from a universal wavefunction. Phys. Lett. A 116, 9 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Semiclassicality and Quantum Cosmology: Interpretative Issues. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_48

Download citation

Publish with us

Policies and ethics