Skip to main content

Configurational Relationalism: Field Theory and GR’s Thin Sandwich

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3585 Accesses

Abstract

We first show how the Temporal and Configurational Relationalism aspects of Background Independence can be implemented for field theories as well. We then consider the particular instance of Configurational Relationalism which occurs in general relativity. In this manner, we recover Wheeler’s much earlier Thin Sandwich formulation and recast it in Temporal Relationalism compatible form. Thus we arrive at full general relativity case of the current book’s main approach to the Problem of Time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This book makes further systematic use of a number of further fonts to encode the role of the object in question (e.g. constraint or beable). If lost at any stage, consult the list of fonts in Appendix X.

  2. 2.

    In fact, the first of these can be rewritten as \(\text{L}(t; \boldsymbol{Q}]\), which is a univariate functional due to \(\text{d}/\text{d} t\) acting on the \(\boldsymbol{Q}\) to form the velocities. However, this does not affect the types of derivatives that the theory has acting upon \(\text{L}\), so it does not disrupt the portmanteau.

References

  1. Anderson, E.: Variations on the seventh route to relativity. Phys. Rev. D 68, 104001 (2003). gr-qc/0302035

    Article  ADS  MathSciNet  Google Scholar 

  2. Anderson, E.: Does relationalism alone control geometrodynamics with sources? In: Christiansen, M.N., Rasmussen, T.K. (eds.) Classical and Quantum Gravity Research. Nova, New York (2008). arXiv:0711.0285

    Google Scholar 

  3. Anderson, E.: New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split. Class. Quantum Gravity 25, 175011 (2008). arXiv:0711.0288

    Article  ADS  MATH  Google Scholar 

  4. Anderson, E.: Machian time is to be abstracted from what change? arXiv:1209.1266

  5. Anderson, E., Barbour, J.B.: Interacting vector fields in relativity without relativity. Class. Quantum Gravity 19, 3249 (2002). gr-qc/0201092

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Anderson, E., Mercati, F.: Classical machian resolution of the spacetime construction problem. arXiv:1311.6541

  7. Anderson, E., Barbour, J.B., Foster, B.Z., ó Murchadha, N.: Scale-invariant gravity: geometrodynamics. Class. Quantum Gravity 20, 157 (2003). gr-qc/0211022

    Article  MathSciNet  MATH  Google Scholar 

  8. Baierlein, R.F., Sharp, D.H., Wheeler, J.A.: Three-dimensional geometry as carrier of information about time. Phys. Rev. 126, 1864 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Barbour, J.B.: The timelessness of quantum gravity. I. The evidence from the classical theory. Class. Quantum Gravity 11, 2853 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Barbour, J.B.: The nature of time, fqxi ‘nature of time’ essay competition: juried first prize. arXiv:0903.3489

  11. Barbour, J.B., Foster, B.Z., ó Murchadha, N.: Relativity without relativity. Class. Quantum Gravity 19, 3217 (2002). gr-qc/0012089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Belinskii, V.A., Khalatnikov, I.M., Lifshitz, E.M.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)

    Article  ADS  Google Scholar 

  13. Brown, J.D., York, J.W.: Jacobi’s action and the recovery of time in general relativity. Phys. Rev. D 40, 3312 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Christodoulou, D.: The chronos principle. Nuovo Cimento B 26, 67 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. Christodoulou, D.: The chronos principle and the interactions of fields of spin 0 and 1. In: Proceedings, Marcel Grossmann Meeting on General Relativity, Trieste, 1975. Oxford University Press, Oxford (1977)

    Google Scholar 

  16. D’Eath, P.D.: Supersymmetric Quantum Cosmology. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  17. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  18. Fodor, G.: The thin sandwich conjecture. Ph.D. thesis, Budapest (1995)

    Google Scholar 

  19. Giulini, D.: The generalized thin-sandwich problem and its local solvability. J. Math. Phys. 40, 1470 (1999). gr-qc/9805065

    Article  MathSciNet  MATH  Google Scholar 

  20. Isenberg, J., Nester, J.: The effect of gravitational interaction on classical fields: a Hamilton Dirac analysis. Ann. Phys. (N. Y.) 107, 56 (1977)

    Article  ADS  Google Scholar 

  21. Isham, C.J.: Some quantum field theory aspects of the superspace quantization of general relativity. Proc. R. Soc. Lond. A 351, 209 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jacobson, T.: Einstein-Aether gravity: a status report. P.o.S.Q.G.-Ph. 020 (2007). arXiv:0801.1547

  23. Kuchař, K.V.: Kinematics of tensor fields in hyperspace. II. J. Math. Phys. 17, 792 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kuchař, K.V.: Dynamics of tensor fields in hyperspace. III. J. Math. Phys. 17, 801 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kuchař, K.V.: Geometrodynamics with tensor sources IV. J. Math. Phys. 18, 1589 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. Misner, C.W., Thorne, K., Wheeler, J.A.: Gravitation. Freedman, San Francisco (1973)

    Google Scholar 

  27. Mondragon, M., Montesinos, M.: Covariant canonical formalism for four-dimensional BF theory. J. Math. Phys. 47, 022301 (2006). arXiv:gr-qc/0402041

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  29. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  30. Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, B.S., DeWitt, C.M. (eds.) Groups, Relativity and Topology. Gordon & Breach, New York (1964)

    Google Scholar 

  31. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres: 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Configurational Relationalism: Field Theory and GR’s Thin Sandwich. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_18

Download citation

Publish with us

Policies and ethics