Skip to main content

Quantum Gravity Programs

  • Chapter
  • First Online:
  • 3591 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

Abstract

This chapter introduces the main Quantum Gravity programs to date, with historical inter-connections and various conceptual classifications as follows.

  1. A)

    The covariant, canonical and path integral approach trilemma.

  2. B)

    Spacetime versus space primality.

  3. C)

    Whether or not to alter gravitational theory so as to facilitate its quantization.

  4. D)

    Top-down and bottom-up approaches.

We furthermore outline many of the main programs in the Quantum Gravity literature so far: covariant quantization with its graviton concept, the canonical approaches of geometrodynamics and loop quantum gravity, the gravitational path-integral approach, supergravity, perturbative string theory, and its non-perturbative counterpart: M-theory.

We also continue the Preface’s exposition of the Planck unit regime, and delineate quantum field theory in curved spacetime (QFTiCS) and quantum cosmology’s less extreme regimes. QFTiCS is sufficient setting to consider Hawking and Unruh radiation, and is also an arena in which many quantum field theory concepts and techniques are already limited due to more general forms time and spacetime take here.

This chapter provides significant context for the current book, whose main topics—the Problem of Time and Background Independence underlying this—are major conceptual and foundational topics in Quantum Gravity. Indeed, geometrodynamics, loops, gravitational path integrals, supergravity and M-Theory are all major sites for Background Independent notions and thus exhibition of Problems of Time.

[The Preface and Chaps. 6 and 8 are essential preliminary reading for this chapter, which, in turn, is essential reading for Part III.]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since the approximate dates and ancestry of the various Quantum Gravity programs in this Chapter are rather nontrivial, this ‘family tree’ figure may quite often be a useful resource as regards outlining how these programs ‘fit together’ both conceptually and historically.

  2. 2.

    Spin-0 and spin-2 mediators together is also a tenable possibility, as in e.g. Scalar–Tensor Theories of Gravitation.

  3. 3.

    The positive norm notion itself, however, does not require Killing vectors [695].

  4. 4.

    See Appendices Q.9 and U.6 for a conceptual outline of these.

  5. 5.

    Extra spatial dimensions are relatively uncontroversial. However, considering time to have more than one dimension would, carry many technical and conceptual difficulties, starting with the difficulties with ultrahyperbolic PDEs outlined in Sect. 31.3.

  6. 6.

    These actions are named after theoretical physicists Yoichiro Nambu, Tetsuo Goto and Alexander Polyakov.

  7. 7.

    These are named after mathematicians Eugenio Calabi and Shing-Tung Yau. See [673] for an especially accessible presentation of the various layers of structure leading to the definition of these.

  8. 8.

    See Appendix E for a start on what \(E_{8}\) is.

  9. 9.

    This construct is named after early 20th century mathematician Émile Borel; see e.g. [194, 269, 394] for further discussion of this in the context of String Theory.

  10. 10.

    This is named after physicists Fernando Barbero and Giorgio Immirzi. See Sect. 24.9 for the geometrical meaning of this parameter and of the corresponding version of Ashtekar variables.

  11. 11.

    Branes provide further ways of hiding extra dimensions, such as ‘warping’, which are a further large source of phenomenological nonuniqueness.

  12. 12.

    The ‘D’ here stands for Dirichlet boundary-value problem [220], named after 19th century mathematician Gustav Dirichlet.

References

  1. Anderson, J.L.: Relativity principles and the role of coordinates in physics. In: Chiu, H-Y., Hoffmann, W.F. (eds.) Gravitation and Relativity, p. 175. Benjamin, New York (1964)

    Google Scholar 

  2. Anderson, E.: Beables/observables in classical and quantum gravity. SIGMA 10, 092 (2014). arXiv:1312.6073

    MathSciNet  MATH  Google Scholar 

  3. Anderson, E.: Six new mechanics corresponding to further shape theories. Int. J. Mod. Phys. D 25, 1650044 (2016). arXiv:1505.00488

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Appelquist, T., Chodos, A., Freund, P.G.O.: Modern Kaluza–Klein Theories. Addison–Wesley, Reading (1987)

    MATH  Google Scholar 

  5. Armstrong, M.A.: Basic Topology. Springer, New York (1983)

    Book  MATH  Google Scholar 

  6. Barbour, J.B.: The timelessness of quantum gravity. II. The appearance of dynamics in static configurations. Class. Quantum Gravity 11, 2875 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. Barbour, J.B.: The End of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  8. Barrow, J.: Wigner inequalities for a black hole. Phys. Rev. D 54, 6563 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bern, Z.: Perturbative quantum gravity and its relation to gauge theory. Living Rev. Relativ. 5 (2002)

    Google Scholar 

  10. Bern, Z., Dixon, L.J., Roiban, R.: Is \(\mathrm{N} = 8\) supergravity ultraviolet finite? Phys. Lett. B 644, 265 (2007). hep-th/0611086

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  12. Blumenhagen, R., Gmeiner, F., Honecker, G., Lust, D., Weigand, T.: The statistics of supersymmetric D-brane models. Nucl. Phys. B 713, 83 (2005). hep-th/0411173

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 8, 11 (2005). gr-qc/0601085

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Boulware, D., Deser, S.: Classical general relativity derived from quantum gravity. Ann. Phys. 89, 193 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bronstein, M.P.: Quantentheories Schwacher Gravitationsfelder [Quantum theories of the weak gravitational field]. Phys. Z. Sowjetunion 9, 140 (1936)

    Google Scholar 

  16. Carlip, S.: Quantum Gravity in \(2 + 1\) Dimensions. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  17. Carlip, S.: Quantum gravity: a progress report. Rep. Prog. Phys. 64, 885 (2001). gr-qc/0108040

    Article  ADS  MathSciNet  Google Scholar 

  18. Carlip, S.: Challenges for emergent gravity. arXiv:1207.2504

  19. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vols. 1 and 2. Wiley, Chichester (1989)

    Book  MATH  Google Scholar 

  20. De Felice, A., Tsujikawa, S.: \(f(R)\) theories. Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  MATH  Google Scholar 

  21. D’Eath, P.D.: Supersymmetric Quantum Cosmology. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  22. Deser, S., Kay, J.H., Stelle, K.S.: Hamiltonian formulation of supergravity. Phys. Rev. 16, 2448 (1977)

    ADS  Google Scholar 

  23. DeWitt, B.S.: The quantization of geometry. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  24. DeWitt, B.S.: Gravity: a universal regulator? Phys. Rev. Lett. 13, 114 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  26. DeWitt, B.S.: Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 160, 1195 (1967)

    Article  ADS  MATH  Google Scholar 

  27. DeWitt, B.S.: Quantum theory of gravity. III. Applications of the covariant theory. Phys. Rev. 160, 1239 (1967)

    Article  ADS  MATH  Google Scholar 

  28. Doering, A., Isham, C.: ‘What is a thing?’: topos theory in the foundations of physics. In: Coecke, R. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, vol. 813. Springer, Heidelberg (2011). arXiv:0803.0417

    Google Scholar 

  29. Douglas, M.R.: The statistics of string/M-theory vacua. J. High Energy Phys. 0305, 046 (2003). hep-th/0303194

    Article  ADS  MathSciNet  Google Scholar 

  30. Duncan, A.: The Conceptual Framework of Quantum Field Theory. Oxford University Press, London (2012)

    Book  MATH  Google Scholar 

  31. Einstein, A.: The foundation of the general theory of relativity. Ann. Phys. (Ger.) 49, 769 (1916); The English translation is available in The Principle of Relativity. Dover, New York (1952), formerly published by Methuen, London (1923)

    Article  ADS  Google Scholar 

  32. Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7, 51 (1977)

    Article  ADS  Google Scholar 

  33. Feynman, R.P.: The quantum theory of gravitation. Acta Phys. Pol. 24, 697 (1963)

    MathSciNet  Google Scholar 

  34. Feynman, R.P. (lecture course given in 1962–1963), published as Feynman, R.P., Morinigo, F.B., Wagner, W.G., Hatfield, B. (eds.): Feynman Lectures on Gravitation. Addison–Wesley, Reading (1995)

    Google Scholar 

  35. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Fradkin, E.S., Vasiliev, M.A.: Hamiltonian formalism, quantization and \(S\)-matrix for supergravity. Phys. Lett. B 72, 70 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Fredehagan, K., Haag, R.: Generally covariant quantum field theory and scaling limits. Commun. Math. Phys. 108, 91 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  39. Gambini, R., Pullin, J.: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  40. Gell-Mann, M., Hartle, J.B.: Decoherence as a fundamental phenomenon in quantum dynamics. Phys. Rev. D 47, 3345 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  41. Giulini, D.: Equivalence principle, quantum mechanics, and atom-interferometric tests. Talk delivered on October 1st 2010 at the Regensburg conference on Quantum Field Theory and Gravity. arXiv:1105.0749

  42. Goenner, H.F.M.: On the history of unified field theories. Living Rev. Relativ. 2 (2004)

    Google Scholar 

  43. Goroff, M.H., Sagnotti, A.: The ultraviolet behaviour of Einstein gravity. Nucl. Phys. B 266, 709 (1986)

    Article  ADS  Google Scholar 

  44. Green, M., Schwarz, J., Witten, E.: Superstring Theory. Volume 1. Introduction. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  45. Green, M., Schwarz, J., Witten, E.: Superstring Theory. Volume 2. Loop Amplitudes, Anomalies and Phenomenology. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  46. Gross, D.J., Periwal, V.: String perturbation theory diverges. Phys. Rev. Lett. 60, 2105 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  47. Halliwell, J.J.: Somewhere in the universe: where is the information stored when histories decohere? Phys. Rev. D 60, 105031 (1999). quant-ph/9902008

    Article  ADS  MathSciNet  Google Scholar 

  48. Halliwell, J.J.: The interpretation of quantum cosmology and the problem of time. In: Gibbons, G.W., Shellard, E.P.S., Rankin, S.J. (eds.) The Future of Theoretical Physics and Cosmology (Stephen Hawking 60th Birthday Festschrift Volume). Cambridge University Press, Cambridge (2003). gr-qc/0208018

    Google Scholar 

  49. Halliwell, J.J., Dodd, P.J.: Decoherence and records for the case of a scattering environment. Phys. Rev. D 67, 105018 (2003). quant-ph/0301104

    Article  ADS  Google Scholar 

  50. Halliwell, J.J., Hawking, S.W.: Origin of structure in the universe. Phys. Rev. D 31, 1777 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  51. Halliwell, J.J., Louko, J.: Steepest descent contours in the path integral approach to quantum cosmology. 3. A general method with applications to minisuperspace models. Phys. Rev. D 42, 3997 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  52. Halliwell, J.J., Thorwart, J.: Life in an energy eigenstate: decoherent histories analysis of a model timeless universe. Phys. Rev. D 65, 104009 (2002). gr-qc/0201070

    Article  ADS  MathSciNet  Google Scholar 

  53. Hartle, J.B.: The quantum mechanics of closed systems. In: Hu, B.-L., Ryan, M.P., Vishveshwara, C.V. (eds.) Directions in Relativity, vol. 1. Cambridge University Press, Cambridge (1993). gr-qc/9210006

    Google Scholar 

  54. Hartle, J.B.: Spacetime quantum mechanics and the quantum mechanics of spacetime. In: Julia, B., Zinn-Justin, J. (eds.) Gravitation and Quantizations: Proceedings of the 1992 Les Houches Summer School. North Holland, Amsterdam (1995). gr-qc/9304006

    Google Scholar 

  55. Hartle, J.B.: Quantum pasts and the utility of history. Phys. Scr. T 76, 67 (1998). gr-qc/9712001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Hartle, J.B.: The physics of ‘now’. Am. J. Phys. 73, 101 (2005). gr-qc/0403001

    Article  ADS  Google Scholar 

  57. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Hawking, S.W., Page, D.N.: Operator ordering and the flatness of the universe. Nucl. Phys. B 264, 185 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  59. Hawking, S.W., Page, D.N.: How probable is inflation? Nucl. Phys. B 298, 789 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  60. Heisenberg, W., Pauli, W.: Zer Quantendynamik der Wellenfelder [Quantum dynamics of wave fields]. Z. Phys. 56, 1 (1929)

    Article  ADS  MATH  Google Scholar 

  61. Isham, C.J.: An introduction to quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D. (eds.) Oxford Symposium on Quantum Gravity. Clarendon, Oxford (1975)

    Google Scholar 

  62. Isham, C.J.: Quantum field theory in curved spacetimes. A general mathematical framework. In: Proceedings, Differential Geometrical Methods in Mathematical Physics, Bonn, 1977 (1977), Berlin

    Google Scholar 

  63. Isham, C.J.: Quantum gravity—an overview. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon, Oxford (1981)

    Google Scholar 

  64. Isham, C.J.: Aspects of Quantum Gravity. Lectures Given at Conference: C85–07-28.1 (Scottish Summer School 1985:0001), available on KEK archive

    Google Scholar 

  65. Isham, C.J.: Canonical groups and the quantization of geometry and topology. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity. Birkhäuser, Boston (1991)

    Google Scholar 

  66. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011

    Google Scholar 

  67. Isham, C.J.: Prima facie questions in quantum gravity. In: Lect. Notes Phys., vol. 434. (1994). gr-qc/9310031

    Google Scholar 

  68. Isham, C.J.: A new approach to quantising space-time: I. Quantising on a general category. Adv. Theor. Math. Phys. 7, 331 (2003). gr-qc/0303060

    Article  MathSciNet  MATH  Google Scholar 

  69. Isham, C.J.: A new approach to quantising space-time: II. Quantising on a category of sets. Adv. Theor. Math. Phys. 7, 807 (2003). gr-qc/0304077

    Article  MathSciNet  MATH  Google Scholar 

  70. Isham, C.J.: A new approach to quantising space-time: III. State vectors as functions on arrows. Adv. Theor. Math. Phys. 8, 797 (2004). gr-qc/0306064

    Article  MATH  Google Scholar 

  71. Isham, C.J.: Topos methods in the foundations of physics. In: Halvorson, H. (ed.) Deep Beauty. Cambridge University Press, Cambridge (2010). arXiv:1004.3564

    Google Scholar 

  72. Isham, C.J.: Quantising on a category. quant-ph/0401175

  73. Jacobson, T.: New variables for canonical supergravity. Class. Quantum Gravity 5, 923 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Kiefer, C.: Conceptual issues in quantum cosmology. Lect. Notes Phys. 541, 158 (2000). gr-qc/9906100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  76. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992); Reprinted as Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)

    Google Scholar 

  77. Kuchař, K.V.: Canonical quantum gravity. In: Gleiser, R.J., Kozamah, C.N., Moreschi, O.M. (eds.) General Relativity and Gravitation 1992. IOP Publishing, Bristol (1993). gr-qc/9304012

    Google Scholar 

  78. Kuchař, K.V.: The problem of time in quantum geometrodynamics. In: Butterfield, J. (ed.) The Arguments of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  79. Kuchař, K.V., Ryan, M.P.: Is minisuperspace quantization valid?: Taub in mixmaster. Phys. Rev. D 40, 3982 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  80. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Butterworth–Heinemann, Oxford (1987)

    MATH  Google Scholar 

  81. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1133 (1999). hep-th/9711200

    Article  MathSciNet  MATH  Google Scholar 

  83. Mathur, S.D.: What exactly is the information paradox? Lect. Notes Phys. 769, 3 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Misner, C.W.: Feynman quantization of general relativity. Rev. Mod. Phys. 29, 497 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Misner, C.W.: Quantum cosmology. I. Phys. Rev. 186, 1319 (1969)

    Article  ADS  MATH  Google Scholar 

  86. Misner, C.W.: Minisuperspace. In: Klauder, J. (ed.) Magic Without Magic: John Archibald Wheeler. Freeman, San Francisco (1972)

    Google Scholar 

  87. Misner, C.W., Thorne, K., Wheeler, J.A.: Gravitation. Freedman, San Francisco (1973)

    Google Scholar 

  88. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  89. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  90. Nakahara, M.: Geometry, Topology and Physics. Institute of Physics Publishing, London (1990)

    Book  MATH  Google Scholar 

  91. Nash, C.: Differential Topology and Quantum Field Theory. Academic Press, London (1991)

    MATH  Google Scholar 

  92. Nicolai, H., Peeters, K., Zamaklar, M.: Loop quantum gravity: an outside view. Class. Quantum Gravity 22, R193 (2005). hep-th/0501114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Page, D.N.: Sensible quantum mechanics: are probabilities only in the mind? Int. J. Mod. Phys. D 5, 583 (1996). gr-qc/9507024

    Article  ADS  MathSciNet  Google Scholar 

  94. Page, D.N.: Consciousness and the quantum. arXiv:1102.5339

  95. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  96. Palmer, M.C., Takahashi, M., Westman, H.F.: Localized qubits in curved spacetimes. Ann. Phys. 327, 1078 (2012). arXiv:1108.3896

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Penrose, R., Rindler, W.: Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  98. Peres, A., Rosen, N.: Queantum limitations on the measurement of gravitational fields. Phys. Rev. 118, 335 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Pilati, M.: The canonical formulation of supergravity. Nucl. Phys. B 132, 138 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  100. Polchinski, J.: String Theory, vols. I and II. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  101. Rosenfeld, L.: Über die Gravitationswirkung des Lichtes [Concerning the gravitational effects of light]. Z. Phys. 65, 589 (1930)

    Article  ADS  Google Scholar 

  102. Rosenfeld, L.: Zur Quantelung der Wellenfelder [On the quantization of wave fields]. Ann. Phys. 5, 113 (1930)

    Article  MATH  Google Scholar 

  103. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  104. Rovelli, C., Smolin, L.: Loop space representation for quantum general relativity. Nucl. Phys. B 331, 80 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  105. Seiberg, N.: Emergent spacetime. In: Gross, D., Henneaux, M., Sevrin, A. (eds.): The Quantum Structure of Space and Time, Proceedings of the 23rd Solvay Conference in Physics. hep-th/0601234

  106. Smolin, L.: The classical limit and the form of the Hamiltonian constraint in nonperturbative quantum gravity. gr-qc/9609034

  107. Stelle, K.S.: Renormalization of higher-derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  108. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). hep-th/9601029

    Article  ADS  MathSciNet  Google Scholar 

  109. ’t Hooft, G., Veltman, M.: One-loop divergences in the theory of gravitation. Ann. Inst. Henri Poincaré 20, 69 (1974)

    ADS  Google Scholar 

  110. Teitelboim, C.: Supergravity and square roots of constraints. Phys. Rev. Lett. 38, 1106 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  111. Teitelboim, C.: The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly. In: Christensen, S.M. (ed.) Quantum Theory of Gravity. Hilger, Bristol (1984)

    Google Scholar 

  112. Thiemann, T.: Quantum spin dynamics (QSD). Class. Quantum Gravity 15, 839 (1998). gr-qc/9606089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  114. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  115. Unruh, W.G., Wald, R.M.: Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40, 2598 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  116. Vargas Moniz, P.: Quantum Cosmology—The Supersymmetric Perspective, vols. 1 and 2. Springer, Berlin (2010)

    MATH  Google Scholar 

  117. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  118. Wald, R.M.: The formulation of quantum field theory in curved spacetime. In: Rowe, D. (ed.) Proceedings of the ‘Beyond Einstein Conference’. Birkhäuser, Boston (2009). arXiv:0907.0416

    Google Scholar 

  119. Weinberg, S.: Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix. Phys. Lett. 9, 357 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Weinberg, S.: Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass. Phys. Rev. 135, 1049 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Weinberg, S.: Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations. Phys. Rev. 138, 988 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  122. Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, p. 790. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  123. Weinberg, S.: The Quantum Theory of Fields. Vol. I. Foundations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  124. Weinberg, S.: The Quantum Theory of Fields. Vol III. Supersymmetry. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  125. Weyl, H.: Gravitation und Elektricitat [Gravitation and electricity]. Preuss. Akad. Wiss. Berl. (1918); The English translation is available in e.g. The Principle of Relativity. Dover, New York (1952), formerly published by Methuen, London (1923)

    Google Scholar 

  126. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres: 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968)

    Google Scholar 

  127. Will, S.C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014). arXiv:1403.7377

    Article  ADS  MATH  Google Scholar 

  128. Wiltshire, D.L.: In: Robson, B., Visvanathan, N., Woolcock, W.S. (eds.) Cosmology: The Physics of the Universe. World Scientific, Singapore (1996). gr-qc/0101003

    Google Scholar 

  129. Witten, E.: Search for a realistic Kaluza–Klein theory. Nucl. Phys. B 186, 412 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  130. Witten, E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). hep-th/9802150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. Witten, E.: Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189 (2004). hep-th/0312171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. York Jr., J.W.: Mapping onto solutions of the gravitational initial value problem. J. Math. Phys. 13, 125 (1972)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Quantum Gravity Programs. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_11

Download citation

Publish with us

Policies and ethics