Response Pattern of Selected Tropical Perennials to Organic and Inorganic Fertilizers Based on Empirical Data

  • K. P. BaiyeriEmail author
  • F. D. Ugese


Tropical perennials have immense nutritional, social and economic significance. However, the environment of their growth often limits their productivity and ultimate utilization. The ability of tropical soils to support plant growth is severely restricted by such properties as poor structure and drainage, low inherent fertility and nutrient imbalances. Socio-economic pressures often lead to more intensive soil cultivation and widespread adoption of inappropriate practices that further degrades the soil. Crop response under such circumstances is generally suboptimal. These soils merit peculiarly appropriate nutrient management options. These include development and utilization of fertilizer technologies uniquely suited for the tropics rather than direct transfer of those intended for the temperate environment and application of organic manures wholly or in combination with inorganic fertilizers. Available evidence indicates the favourable impact of organic manure application on soil properties leading to improved plant response in terms of productivity, produce quality, including postharvest attributes. This is suggestive of the strategic role of organic sources of nutrients in improving the ability of tropical soils to support plant growth and productivity indefinitely while also ensuring human health and environmental quality. In this chapter, empirical data on response pattern of some selected tropical perennials to organic and inorganic fertilizers are presented and discussed.


Perennials plants Fertilizers Tropical environment Growth responses 


  1. Abirami K., Rema J., Mathew P. A., Srinivasan V., & Hamza S. (2010). Effect of different propagation media on seed germination, seedling growth and vigour of nutmeg (Myristica fragrans Houtt.). Journal of Medicinal Plants Research 4, 2054–2058.Google Scholar
  2. Akinrinde, E. A. (2006). Strategies for improving crops’ use-efficiencies of fertilizer nutrients in sustainable agricultural systems. Pakistan Journal of Nutrition, 5, 185–193.CrossRefGoogle Scholar
  3. Alva, A. K., Mattos, D. J., Paramasivam, M. N., & Sajwan, K. S. (2006). Potassium management for optimizing citrus production and quality. International Journal of Fruit Science, 6, 1–43.CrossRefGoogle Scholar
  4. Amberger, A. (2006). Soil fertility and plant nutrition in the tropics and subtropics. Paris: IFA and IPI.Google Scholar
  5. Ani, J. U., & Baiyeri, K. P. (2008). Impact of poultry manure and harvest season on juice quality of yellow passion fruit (Passiflora edulis var. flavicarpa Deg.) in the sub-humid zone of Nigeria. Fruits 63(4), 239–247.Google Scholar
  6. Ani, I. U., & Baiyeri, K. P. (2011). The effects of poultry manure rates and cropping year on phenology and yield response of yellow passion fruit (Passiflora edulis var flavicarpa Deg) in sub-humid zone of Nigeria. Proceedings of the 29th Annual Conference of the Horticultural Society of Nigeria, 24th–29th July 2011.Google Scholar
  7. Araujo, R., Bruckner, C. H., Martinez, H. E. P., Saloao, L. C. C., Alvarez, V. H., Souza, A., Pereira, W. E., & Hizumi, S. (2006). Quality of yellow passion fruit (Passiflora edulis Sims F Var Flavicarpa Deg) as affected by potassium nutrition. Fruits, 61, 109–115.CrossRefGoogle Scholar
  8. Avav, T., & Uza, D. V. (2002). Agriculture. In A. L. Pigeonniere (Ed.), Africa atlases: Nigeria. Paris: Les Editions J A.Google Scholar
  9. Awoleye, F. (1995). Effects of seed sources on the growth of seedlings of Vitellaria paradoxum in the southern Guinea savanna of Nigeria. Nigerian Journal of Botany, 8, 65–69.Google Scholar
  10. Baiyeri, K. P. and Mbah, B. N. (1994). Growth and yield correlation in false horn plantain (Musa AAB cv. Agbagba) in a sub-humid zone of Nigeria. MusAfrica, 5, 3–4.Google Scholar
  11. Baiyeri, K. P. (2003). Evaluation of nursery media for seedling emergence and early seedling growth of two tropical tree species. Moor Journal of Agricultural Research, 4, 60–65.Google Scholar
  12. Baiyeri, K. P., & Mbah, B. N. (2006). Effects of soilless and soil based nursery media on seedling emergence, growth and response to water stress of African breadfruit (Treculia Africana Decne). African Journal of Biotechnology, 5, 1405–1410.Google Scholar
  13. Baiyeri, K. P., & Tenkouano, A. (2007). Manure placement influenced growth and dry matter yield of a plantain hybrid. African Crop Science Conference Proceedings, 8, 385–390.Google Scholar
  14. Baiyeri, K. P., & Tenkouano, A. (2008). Fruit characteristics and ripening pattern of ten Musa genotypes in a sub-humid environment in Nigeria. Fruits, 63, 3–9.CrossRefGoogle Scholar
  15. Baiyeri, K. P., & Ugese, F. D. (2011). Tropical fruits and vegetables: Physical properties. In J. Glínski, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of Agrophysics. Poland: Springer, AA Dordrecht.Google Scholar
  16. Baiyeri, K. P., Mbah, B. N., & Tenkouano, A. (2000). Yield components of triploid and tetraploid Musa genotypes in Nigeria. HortScience, 35, 1338–1343.Google Scholar
  17. Baiyeri, K. P., Ndukwe, O. O., & Tenkouano, A. (2011a). Manure placement method influenced growth, phenology and bunch yield of three Musa genotypes in a humid zone of southern Nigeria. Proceedings of the 29th Annual Conference of the Horticultural Society of Nigeria, 24th–29th July 2011.Google Scholar
  18. Baiyeri, K. P., Ndukwe, O. O., & Tenkouano, A. (2011b). The effect of manure placement methods on dry matter partitioning pattern in three Musa genotypes grown in a humid agro-ecology of southern Nigeria. Proceedings of the 29th Annual Conference of the Horticultural Society of Nigeria, 24th–29th July 2011.Google Scholar
  19. Baiyeri, K. P., Ugese, F. D., & Uchendu, T. O. (2011c). The effects of previous fertilizer treatments on passion fruit seed quality, and seedling emergence and growth qualities in soilless media. Journal of Agricultural Technology, 7, 1397–1407.Google Scholar
  20. Baligar, V. C., & Bennett, O. L. (1986). Outlook on fertilizer use efficiency in the tropics. Fertilizer Research, 10, 83–96.CrossRefGoogle Scholar
  21. Boffa, J. M., Yameogo, G., Nikiema, P., & Taonda, J. B. (1996). What future for the shea tree? Agroforestry Today, 8, 5–9.Google Scholar
  22. Cardwell, V. B. (1954). Seed germination and crop production. In Physiological basis of crop growth and development. Madison: American Society of Agronomy/Crop Science Society of America.Google Scholar
  23. Chweya, J. A. (1982). Nutrient deficiency symptoms in kale (Brassica oleracea Var Acephala). East African Agricultural and Forestry Journal, 48, 15–18.Google Scholar
  24. Daniells, J., Englberger, I., & Lorens, A. (2011). Farm and forestry production and marketing profile for banana and plantain (Musa spp.) In C. R. Elevitch (Ed.), Specialty crops for Pacific Island Agroforestry. Holuolua, Hwai’I: Permanent Agriculture Resources (PAR). Retrieved May 10, 2016 from Scholar
  25. Davies, F. S., Maurer, M. Z., & Albrigo, I. G. (1994). Reclaimed wastewater for irrigation of citrus in Florida. HortTechnology, 3, 163–167.Google Scholar
  26. Davis, F. S., & Albrigo, L. G. (1994). Citrus. Wallington: CAB International.Google Scholar
  27. van Ee, S. (1999). Fruit growing in the tropics (2nd ed.). Agrodok-series no. 5. Agromisa foundation.Google Scholar
  28. Embleton, T. W., Jones, W. W., Cree, C. B., & Garber, M. J. (1978). Effects of N on Valencia Production. California Citrog, 45, 22–24.Google Scholar
  29. Evans, E. A., & Ballen, F. H. (2012). An overview of global papaya production, trade and consumption. UF/IFAS Extension: University of Florida.Google Scholar
  30. FAO. (1977). The state of food and agriculture. Rome: FAO.Google Scholar
  31. FAO. (1989). Utilization of tropical foods. Tropical oilseed paper no 47.Google Scholar
  32. FAO. (2004). Food and Agriculture organization Faostat-statistical database. Retrieved May 21, 2004 from
  33. FAO. (2006). Fertilizer use by crop. FAO fertilizer and plant nutrition bulletin no 17.Google Scholar
  34. Geiseller, D., & Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry, 75, 54–63.CrossRefGoogle Scholar
  35. Gmitter, C. J., & Hu, U. M. (1990). The influence of cultivar and high nitrogen and potassium fertilization on fruit quality traits of young orange trees. Proceedings of the Florida State Horticultural Society, 106, 8–12.Google Scholar
  36. Grant, C., Bittman, S., Montreal, M., Plenchette, C., & Morrel, C. (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85, 3–14.CrossRefGoogle Scholar
  37. Hart, J. (1998). Fertilizer and lime materials. Oregon State Extension Services.Google Scholar
  38. Hartmann, H. T., Flocker, W. J., & Kofranek, A. M. (1981). Plant science: Growth, development and utilization of cultivated plants. New Jersey: Prentice-Hall.Google Scholar
  39. Honfo, F. G., Tenkouano, A., & Coulibaly, O. (2011). Banana and plantain-based foods consumption by children and mothers in Cameroon and southern Nigeria: A comparative study. African Journal of Food Science, 5, 287–291.Google Scholar
  40. Hossner, L. R., & Juo, A. S. R. (1999). Soil nutrient management for sustained food crop production for upland farming systems in the tropics. Taipei: Food and fertilizer technology center – an international center for farmers in Asia and Pacific Region.Google Scholar
  41. ICRAF. (2000). International Centre for Research in agroforestry. Agroforestree Database.Google Scholar
  42. IITA. (2000). Annual report, project 2. Ibadan, Nigeria: International Institute of Tropical Agriculture.Google Scholar
  43. Kaddar, T., Russel, D. A., & Cooke, G. W. (1984). The vital role of potassium fertilizers in tropical agriculture. Alabama: International Fertilizer Development Center.Google Scholar
  44. Keay, R. W. J. (1989). Trees of Nigeria. Oxford: Clarendon Press.Google Scholar
  45. Khan, S. A., Mulvaney, R. L., Ellsworth, T. R., & Boast, C. W. (2009). The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 36, 1821–1832.CrossRefGoogle Scholar
  46. Knight, R. J., & Sauls, J. W. (1994). The passion fruit. Gainesville, Fla: University of Florida, Florida Cooperative Extension Service Fact Sheet.Google Scholar
  47. Kongshaugh, G. (1998). Energy consumption and greenhouse gas emissions in fertilizer production. Marraketsch, Maroko: IFA Technical Conference.Google Scholar
  48. Kotschi, J. (2013). A soiled reputation: Adverse impacts of mineral fertilizers in tropical agriculture. WWF Germany: Heinrich Böll Stiftung.Google Scholar
  49. Ladha, J. K., Reddy, C. K., Padre, A. T., & van Kessel, C. (2011). Role of nitrogen fertilization in sustaining organic matter in cultivated soils. Journal of Environmental Quality, 40, 1756–1766.CrossRefPubMedGoogle Scholar
  50. Leakey, R. R. B. (2009). Agroforestry: A delivery mechanism for multi-functional agriculture. In L. R. Kellimore (Ed.), Handbook on agroforestry: Management practices and environmental impact. New York: Nova Science Publishers.Google Scholar
  51. Mattila, P. K., & Joki-Tokola, E. (2003). Effect of treatment and application technique of cattle slurry on its utilization by ley. Nutrient Cycling in Agroecosystems, 65, 221–230.CrossRefGoogle Scholar
  52. Mohammed, J. M. (2002). Imbalance in nutrient supply as a threat to sustainable crop production. In A. Kraus (Ed.), International fertilizer correspondent no 8. International Potash Institute.Google Scholar
  53. Morton, J. F. (1987). Passionfruit. In J. F. Morton (Ed.), Fruits of warm climates. Miami, Florida.Google Scholar
  54. Mulvaney, R. L., Khan, S. A., & Ellsworth, T. R. (2009). Synthetic nitrogen fertilizers deplete soil nitrogen: A global dilemma for sustainable cereal production. Journal of Environmental Quality, 38, 2295–2314.CrossRefPubMedGoogle Scholar
  55. Naher, U. A., Othman, R., & Panhwar, Q. A. (2013). Beneficial effects of mycorrhizal association for crop production in the tropics – A review. International Journal of Agriculture and Biology, 15, 1021–1028.Google Scholar
  56. Nakasone, N. Y., & Paull, R. E. (1999). Tropical fruits. New York: CABI Publishing Company.Google Scholar
  57. Nelson, L. B. (1974). Fertilizers for all-out food production. ASA special publication no 23.Google Scholar
  58. Olajide, K. (2016). Agronomic evaluation of 12 pawpaw accessions grown under three manure rates in derived savanna agro-ecology. M.Sc. Thesis, Department of Crop Science, University of Nigeria, Nsukka.Google Scholar
  59. Olarewaju, J. D. (2004). Promotion of medicinal horticultural plants. Proceedings of 22nd Annual Conference of Horticultural Society of Nigeria, 4th–9th July 2004.Google Scholar
  60. Opeke, L. K. (1987). Tropical tree crops. Ibadan: Spectrum Books Ltd.Google Scholar
  61. Ortese, E. (2014). Studies on orchard management and aspects of agronomic intervention to sweet orange (Citrus sinensis) production in Benue State, Nigeria. Ph.D. Thesis, Department of Crop Science, University of Nigeria, Nsukka.Google Scholar
  62. Ortese, E., Baiyeri, K. P., & Ugese, F. D. (2011). Residual macronutrient concentration and follower maize (Zea mays) crop performance in soilless growth medium previously cropped with six Musa genotypes. Journal of Crop Science and Biotechnology, 14, 321–327.CrossRefGoogle Scholar
  63. Ortese, E., Baiyeri, K. P., & Ugese, F. D. (2012). Demographic features of citrus producers and agronomic management of the crop in Benue state, Nigeria. PAT, 8, 180–190.Google Scholar
  64. Oyebade, B. A., Aiyeloja, A. A., & Ekeke, B. A. (2010). Sustainable agroforestry potentials and climate change mitigation. Advances in Environmental Biology, 4, 58–63.Google Scholar
  65. Rice, R. P., Rice, L. W., & Tindall, H. D. (1986). Fruit and vegetable production in Africa. London: Macmilan.Google Scholar
  66. Samson, J. A. (1980). Tropical fruits. London: Longman Group Limited.Google Scholar
  67. Sanchez, P., Izac, A. M., Buresh, R., Shepherd, K., Soule, M., Mokwunye, U., Palm, C., Woomer, P., & Nderitu, C. (1997). Soil fertility replenishment in Africa as an investment in natural resource capital. In R. J. Buresh, P. A. Sanchez, & F. Calhoun (Eds.), Replenishing soil fertility in Africa. Madison: Soil Science Society of America.Google Scholar
  68. Seymour, G. B., Taylor, E., & Tucker, G. A. (1993). Biochemistry of fruits ripening. London: Chapman and Hall.CrossRefGoogle Scholar
  69. Singh, B., & Ryan, J. (2015). Managing fertilizers to enhance soil health. Paris: IFA. Retrieved from
  70. Smil, V. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochemical Cycles, 13, 647–662.CrossRefGoogle Scholar
  71. Smil, V. (2002). Nitrogen and food production: Proteins for human diets. Ambio, 31, 126–131.CrossRefPubMedGoogle Scholar
  72. Smith, P. F., & Reuther, W. M. (2007). Observations on boron deficiency in citrus. Indvs, 31, 5–7.Google Scholar
  73. Stover, R. H., & Simmonds, N. W. (1987). Bananas. In Tropical agricultural series (3rd ed.). New York: John Wiley and Sons.Google Scholar
  74. Swennen, R. (1990). Plantain cultivation under West African conditions: a reference manual. International Institute for Tropical Agriculture, Ibadan, Nigeria, Amarin Printing Group Co. Ltd. Thailand. 24p.Google Scholar
  75. Thomson, L. M., & Troeh, F. R. (1978). Soils and soil fertility (4th ed.). McGraw Hill: Publication in Agriculture.Google Scholar
  76. Ugese, F. D., Baiyeri, K. P., & Mbah, B. N. (2011). Nursery media influences growth of seedlings of the shea nut tree (Vitellaria paradoxa C. F. Gaertn.) Afr J Plant Sci Biotech, 5, 56–59.Google Scholar
  77. Ugese, F. D., Baiyeri, K. P., & Mbah, B. N. (2012). Expressions of macronutrient deficiency in seedlings of the shea butter tree (Vitellaria paradoxa C.F. Gaertn.) Journal of Agricultural Technology, 8, 1051–1058.Google Scholar
  78. Umali, B. E., & Nikiema, A. (2002). Vitellaria paradoxa C. F. Gaertn. Record from Protabase. In L. P. A. Oyen & R. H. M. J. Lemmens (Eds.), PROTA. The Netherlands: Wageningen.Google Scholar
  79. UNCTAD. (2010). United Nations conference on trade and development. Retrieved from http://www.Unctad.Org/infocomm.
  80. Vickery, M. L., & Vickery, B. (1969). Plant products of tropical Africa. London: Macmillan.Google Scholar
  81. Wallace, T. (1961). The diagnosis of mineral deficiencies in plants (2nd ed.). NJ: Chemical Publishing Co Inc.Google Scholar
  82. Webster, C. C., & Wilson, P. N. (1980). Agriculture in the tropics (2nd ed.640 pp). London, UK: Longman Group.Google Scholar
  83. Wills, R. B. H., McGlasson, W. B., Graham, D., & Daryl, J. (1998). An introduction to physiology and handling of fruits, vegetables and ornamentals. Wallingford: CABI.Google Scholar
  84. Wilson, G. F. (1987). Status of bananas and plantains in West Africa. In G. J. Persley & E. A. De Langhe (Eds.), Banana and plantain breeding strategies, ACIAR Proceedings (Vol. 21, pp. 28–32).Google Scholar
  85. Wu, Q. S., & Zou, Y. N. (2012). Evaluating effectiveness of four inoculation methods with Arbuscular mycorrhizal fungi on trifoliate orange seedlings. International Journal of Agriculture and Biology, 14, 266–270.Google Scholar
  86. Zachée, A., Bekolo, N., Bime, N. D., Yalen, M., & Godswill, N. (2008). Effect of mycorrhizal inoculums and urea fertilizer on diseases development and yield of groundnut crops (Arachis hypogaea L.) African Journal of Biotechnology, 7, 2823–2827.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Crop ScienceUniversity of NigeriaNsukkaNigeria
  2. 2.Department of Crop ProductionUniversity of AgricultureMakurdiNigeria

Personalised recommendations